Among the increasing number of species introduced to coastal regions by man, only a few are able to establish themselves and spread in their new environments. We will show that the Pacific oyster (Crassostrea gigas) took 17 years before a large population of several million oysters became established on natural mussel beds in the vicinity of an oyster farm near the island of Sylt (northern Wadden Sea, eastern North Sea). The first oyster, which had dispersed as a larva and settled on a mussel bed, was discovered 5 years after oyster farming had commenced. Data on abundance and size-frequency distribution of oysters on intertidal mussel beds around the island indicate that recruitment was patchy and occurred only in 6 out of 18 years. Significant proportions of these cohorts survived for at least 5 years. The population slowly expanded its range from intertidal to subtidal locations as well as from Sylt north-and southwards along the coastline. Abundances of more than 300 oysters m 脌2 on mussel beds were observed in 2003, only after two consecutive spatfalls in 2001 and 2002. Analyses of mean monthly water temperatures indicate that recruitment coincided with above-average temperatures in July and August when spawning and planktonic dispersal occurs. We conclude that the further invasion of C. gigas in the northern Wadden Sea will depend on high late-summer water temperatures.
Pile driving during offshore windfarm construction goes along with considerable noise emissions that potentially harm marine mammals in the vicinity and may cause large scale disturbances. Information on the scale of such disturbances is limited. Therefore, assessment and evaluation of the effects of offshore construction on marine mammals is difficult. During summer 2008, 91 monopile foundations were driven into the seabed during construction of the offshore wind farm Horns Rev II in the Danish North Sea. We investigated the spatial and temporal scale of behavioural responses of harbour porpoises Phocoena phocoena to construction noise using passive acoustic monitoring devices (T-PODs) deployed in a gradient sampling design. Porpoise acoustic activity was reduced by 100% during 1 h after pile driving and stayed below normal levels for 24 to 72 h at a distance of 2.6 km from the construction site. This period gradually decreased with increasing distance. A negative effect was detectable out to a mean distance of 17.8 km. At 22 km it was no longer apparent, instead, porpoise activity temporarily increased. Out to a distance of 4.7 km, the recovery time was longer than most pauses between pile driving events. Consequently, porpoise activity and possibly abundance were reduced over the entire 5 mo construction period. The behavioural response of harbour porpoises to pile driving lasted much longer than previously reported. This information should be considered when planning future wind farm construction.
Introduced species are often considered to be a threat to residents, but not all reciprocal trends may reflect species interaction. In the northern German Wadden Sea, native mussel Mytilus edulis beds are declining and overgrown by introduced Pacific oysters Crassostrea gigas and slipper limpets Crepidula fornicata. We review the population development of the three species and analyse whether the invading species may be responsible for the decline of native mussels. The Pacific oyster predominately settles on mussel beds in the intertidal and the slipper limpet dominates around low water line. We compare the development of mussels and invaders in two subregions: mussel beds near the islands of Sylt and Amrum decreased both in the presence (Sylt) and absence (Amrum) of the two invading species and more detailed investigations could not confirm a causal relationship between the increasing invaders and decreasing mussel beds. There is evidence that the decline of mussel beds is mainly caused by failing spatfall possibly due to mild winters, whereas the increase in slipper limpets and oysters is facilitated by mild winters and warm summers, respectively. We conclude that changing species composition is a result of the climatic conditions in the last decade and that there is no evidence yet that the exotic species caused the decline of the natives. It remains an open question whether the species shift will continue and what the consequences for the native ecosystem will be.
Most cetacean species are wide-ranging and highly mobile, creating significant challenges for researchers by limiting the scope of data that can be collected and leaving large areas un-surveyed. Aerial surveys have proven an effective way to locate and study cetacean movements but are costly and limited in spatial extent. Here we present a semi-automated pipeline for whale detection from very high-resolution (sub-meter) satellite imagery that makes use of a convolutional neural network (CNN). We trained ResNet, and DenseNet CNNs using down-scaled aerial imagery and tested each model on 31 cm-resolution imagery obtained from the WorldView-3 sensor. Satellite imagery was tiled and the trained algorithms were used to classify whether or not a tile was likely to contain a whale. Our best model correctly classified 100% of tiles with whales, and 94% of tiles containing only water. All model architectures performed well, with learning rate controlling performance more than architecture. While the resolution of commercially-available satellite imagery continues to make whale identification a challenging problem, our approach provides the means to efficiently eliminate areas without whales and, in doing so, greatly accelerates ocean surveys for large cetaceans.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations鈥揷itations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright 漏 2024 scite LLC. All rights reserved.
Made with 馃挋 for researchers
Part of the Research Solutions Family.