Magnetic resonance spectroscopy (MRS) is the only biomedical imaging method that can noninvasively detect endogenous signals from the neurotransmitter γ-aminobutyric acid (GABA) in the human brain. Its increasing popularity has been aided by improvements in scanner hardware and acquisition methodology, as well as by broader access to pulse sequences that can selectively detect GABA, in particular J-difference spectral editing sequences. Nevertheless, implementations of GABA-edited MRS remain diverse across research sites, making comparisons between studies challenging. This large-scale multi-vendor, multi-site study seeks to better understand the factors that impact measurement outcomes of GABA-edited MRS. An international consortium of 24 research sites was formed. Data from 272 healthy adults were acquired on scanners from the three major MRI vendors and analyzed using the Gannet processing pipeline. MRS data were acquired in the medial parietal lobe with standard GABA+ and macromolecule- (MM-) suppressed GABA editing. The coefficient of variation across the entire cohort was 12% for GABA+ measurements and 28% for MM-suppressed GABA measurements. A multilevel analysis revealed that most of the variance (72%) in the GABA+ data was accounted for by differences between participants within-site, while site-level differences accounted for comparatively more variance (20%) than vendor-level differences (8%). For MM-suppressed GABA data, the variance was distributed equally between site- (50%) and participant-level (50%) differences. The findings show that GABA+ measurements exhibit strong agreement when implemented with a standard protocol. There is, however, increased variability for MM-suppressed GABA measurements that is attributed in part to differences in site-to-site data acquisition. This study’s protocol establishes a framework for future methodological standardization of GABA-edited MRS, while the results provide valuable benchmarks for the MRS community.
Purpose ‘Symmetric’ editing schemes have been proposed to suppress unwanted co-edited MM signals in GABA editing. To investigate the effects of B0 field offsets and drift on macromolecule (MM) suppressed GABA-editing experiments, and to implement and test a prospective correction scheme. Methods Full density-matrix simulations of both conventional (non-symmetric) and symmetric MM-suppressed editing schemes were performed for the GABA spin system to evaluate their offset-dependence. Phantom and in vivo (15 subjects at 3T) GABA-edited experiments with symmetrical suppression of macromolecular (MM) signals were performed to quantify the effects of field offsets on the total GABA+MM signal (designated as GABA+). A prospective frequency correction method based on interleaved water referencing (IWR) acquisitions was implemented and its experimental performance evaluated during positive and negative drift. Results Simulations show that the signal from MM-suppressed symmetrical editing schemes is an order of magnitude more susceptible to field offsets than the signal from non-symmetric editing schemes. The MM-suppressed GABA signal changes by 8.6% per Hz for small field offsets. IWR significantly reduces variance in the field offset and measured GABA levels (both p<0.001 by F-tests) the scanner offset, maintaining symmetric suppression of MM signal. Conclusions Symmetrical editing schemes substantially increase the dependence of measurements on B0 field offsets, which can arise due to patient movement and/or scanner instability. It is recommended that symmetrical editing should be used in combination with effective B0 stabilization, such as that provided by interleaved water referencing.
Accurate and reliable quantification of brain metabolites measured in vivo using 1 H magnetic resonance spectroscopy (MRS) is a topic of continued interest in the field. Aside from differences in the basic approach to quantification, the quantification of metabolite data acquired at different sites and on different platforms poses an additional methodological challenge. In this study, we analyze spectrally edited -aminobutyric acid (GABA) MRS data and quantify GABA levels relative to an internal tissue water reference. Data from 284 volunteers scanned across 25 research sites were collected using standard GABA+ editing. Unsuppressed water acquisitions from the same volume of interest were acquired for signal referencing. Whole-brain T1-weighted structural images were acquired and tissue-segmented to determine gray matter, white matter and cerebrospinal fluid voxel tissue fractions. Water-referenced GABA+ measurements were fully corrected for tissue-dependent signal relaxation and water visibility effects. The cohort-wide coefficient of variation was 17%, which was largely driven by vendor-related differences according to a linear mixed-effects analysis. The mean within-site coefficient of variation was 9%. Vendor differences contributed 53% to the total variance in the data, while the remaining variance was attributed to site-(11%) and participant-level (36%) effects. Results from an exploratory analysis suggested that the vendor differences were related to the water signal acquisition. Discounting the observed vendor-specific effects, water-referenced GABA+ measurements exhibit levels of variance similar to creatine-referenced GABA+ measurements. It is concluded that quantification using internal tissue water referencing remains a viable and reliable method for the in vivo quantification of GABA+ levels.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.