A proper regulation of macrophage polarization is essential for the organism’s health and pathogen control. Differentiation control is known to occur at the transcriptional as well as the posttranscriptional levels. The mechanisms involved, however, have not yet been fully elucidated. In this study, we co-cultured macrophages with viable Gram-positive and Gram-negative bacteria to mimic macrophage differentiation to the M1-like type in an inflammatory milieu. We found that Gram-positive stimulation resulted in increased expressions of miR-7a-5p, miR-148a-3p, miR-155-5p, and miR-351-5p. Of note, these miRNAs were found to target inhibitory mediators of the Rac1-PI3K-Akt pathway and the MyD88-dependent pathway. In contrast, Gram-negative stimulation-induced downregulation of miR-9-5p, miR-27b-3p, miR-93-5p, and miR-106b-5p is known to target key members of the Rac1-PI3K-Akt pathway and the MyD88-dependent pathway. These results, taken together, point to a fine-tuning of macrophage polarization by TLR-induced changes in macrophage miRNA profiles. Here, the miRNA-mediated priming of M1 differentiation seems to differ in the Gram-positive and Gram-negative settings in terms of the mechanism and miRNAs involved.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.