We prove that algebraic K-theory satisfies `pro-descent' for abstract blow-up
squares of noetherian schemes. As an application we derive Weibel's conjecture
on the vanishing of negative K-groups.Comment: 48 pages, final versio
We develop differential algebraic K-theory of regular arithmetic schemes. Our approach is based on a new construction of a functorial, spectrum level Beilinson regulator using differential forms. We construct a cycle map which represents differential algebraic K-theory classes by geometric vector bundles. As an application we derive Lott's relation between short exact sequences of geometric bundles with a higher analytic torsion form.
We introduce a variant of homotopy K-theory for Tate rings, which we call analytic K-theory. It is homotopy invariant with respect to the analytic affine line viewed as an ind-object of closed disks of increasing radii. Under a certain regularity assumption we prove an analytic analog of the Bass fundamental theorem and we compare analytic K-theory with continuous K-theory, which is defined in terms of models. Along the way we also prove some results about the algebraic K-theory of Tate rings.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.