The present experimental investigation covers the construction of a latent heat thermal energy storage system (LHTES), which uses sodium nitrate (NaNO3) as phase change material (PCM). The storage unit is filled with 300 kg of the PCM. For the heat transfer a vertically arranged bimetallic mono tube with longitudinal fins is used. The fins increase the heat flux into/from the PCM. Thermal oil is used as a heat transfer medium, as it allows working temperatures up to 400°C. This thermal energy storage is able to store 60 kWh of thermal energy and can be loaded with a power up to 200 kW. One part of the investigation results presented in this paper was the determination of the storable energy and the comparison with data from literature and calculations. Additionally, the melting behavior of the PCM was measured with temperature sensors located at different positions over the height of the storage unit. Finally, the entrance of the heat transfer medium was changed from the top to the bottom of the thermal energy storage unit and a different melting behavior could be detected.
The use of finned tubes as enhancement method to increase the heat flow rate into a phase change material, which has in many cases a low thermal conductivity, is a common method. A highly efficient and easy-to-assemble solution for finned heat exchanger tubes is a key component for innovative thermal energy storage systems which play a key-role in electricity production and industrial heat management. In the present article the results of the investigation for different designs of bimetallic heat exchanger tubes is presented. These tube designs are developed for the use in latent heat thermal energy storage systems (LHTES) at a medium temperature range. For the use in latent heat thermal energy storage systems, the probably high pressure of the heat transfer medium and the high temperature differences between the operating temperature and the ambient temperature are challenging. Therefore, the bimetallic finned heat exchanger tube consists of a steel tube, where the heat transfer fluid flows, and an aluminum tube with longitudinal fins, which should improve the heat transfer to the phase change material. Due to different thermal expansion coefficients, displacements of the tubes are given. To guarantee a high heat transfer rate between the two connected tubes the contact between aluminum and steel plays an important role. In the present study 4 prototypes (including the new design) were designed, analyzed and compared on the connection strength. Long-term tests for simulating the application in a LHTES were done to determine the creep rupture properties of the compositions. All prototypes were tested successfully; the new design is convinced in many aspects of that challenge and is submitted to the Austrian patent office. Main advantages of the new design are the simple production and assembling compared to other analyzed prototypes. Furthermore, the new design shows the best results under the analyzed operation conditions and the layout of the geometry has a high optimization potential in terms of stresses.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.