This study aimed to develop an approach to evaluate potential effects of plant protection products on honeybee brood with colonies at realistic worst-case exposure rates. The approach comprised 2 stages. In the first stage, honeybee colonies were exposed to a commercial formulation of glyphosate applied to flowering Phacelia tanacetifolia with glyphosate residues quantified in relevant matrices (pollen and nectar) collected by foraging bees on days 1, 2, 3, 4, and 7 postapplication and glyphosate levels in larvae were measured on days 4 and 7. Glyphosate levels in pollen were approximately 10 times higher than in nectar and glyphosate demonstrated rapid decline in both matrices. Residue data along with foraging rates and food requirements of the colony were then used to set dose rates in the effects study. In the second stage, the toxicity of technical glyphosate to developing honeybee larvae and pupae, and residues in larvae, were then determined by feeding treated sucrose directly to honeybee colonies at dose rates that reflect worst-case exposure scenarios. There were no significant effects from glyphosate observed in brood survival, development, and mean pupal weight. Additionally, there were no biologically significant levels of adult mortality observed in any glyphosate treatment group. Significant effects were observed only in the fenoxycarb toxic reference group and included increased brood mortality and a decline in the numbers of bees and brood. Mean glyphosate residues in larvae were comparable at 4 days after spray application in the exposure study and also following dosing at a level calculated from the mean measured levels in pollen and nectar, showing the applicability and robustness of the approach for dose setting with honeybee brood studies. This study has developed a versatile and predictive approach for use in higher tier honeybee toxicity studies. It can be used to realistically quantify exposure of colonies to pesticides to allow the appropriate dose rates to be determined, based on realistic worst-case residues in pollen and nectar and estimated intake by the colony, as shown by the residue analysis. Previous studies have used the standard methodology developed primarily to identify pesticides with insect-growth disrupting properties of pesticide formulations, which are less reliant on identifying realistic exposure scenarios. However, this adaptation of the method can be used to determine dose–response effects of colony level exposure to pesticides with a wide range of properties. This approach would limit the number of replicated tunnel or field-scale studies that need to be undertaken to assess effects on honeybee brood and may be of particular benefit where residues in pollen and nectar are crop- and/or formulation-specific, such as systemic seed treatments and granular applications. Integr Environ Assess Manag 2014;10:463–470.
Determining links between plant defence strategies is important to understand plant evolution and to optimize crop breeding strategies. Although several examples of synergies and trade-offs between defence traits are known for plants that are under attack by multiple organisms, few studies have attempted to measure correlations of defensive strategies using specific single attackers. Such links are hard to detect in natural populations because they are inherently confounded by the evolutionary history of different ecotypes. We therefore used a range of 20 maize inbred lines with considerable differences in resistance traits to determine if correlations exist between leaf and root resistance against pathogens and insects. Aboveground resistance against insects was positively correlated with the plant's capacity to produce volatiles in response to insect attack. Resistance to herbivores and resistance to a pathogen, on the other hand, were negatively correlated. Our results also give first insights into the intraspecific variability of root volatiles release in maize and its positive correlation with leaf volatile production. We show that the breeding history of the different genotypes (dent versus flint) has influenced several defensive parameters. Taken together, our study demonstrates the importance of genetically determined synergies and trade-offs for plant resistance against insects and pathogens.
Plants infested with herbivorous arthropods emit complex blends of volatile compounds, which are used by several natural enemies as foraging cues. Despite detailed knowledge on the composition and amount of the emitted volatiles in many plant-herbivore systems, it remains largely unknown which compounds are essential for the attraction of natural enemies. In this study, we used a combination of different fractionation methods and olfactometer bioassays in order to examine the attractiveness of different compositions of volatile blends to females of the parasitoid Cotesia marginiventris. In a first step, we passed a volatile blend emitted by Spodoptera littoralis infested maize seedlings over a silica-containing filter tube and subsequently desorbed the volatiles that were retained by the silica filter (silica extract). The volatiles that broke through the silica filter were collected on and subsequently desorbed from a SuperQ filter (breakthrough). The silica extract was highly attractive to the wasps, whereas the breakthrough volatiles were not attractive. The silica extract was even more attractive than the extract that contained all herbivore-induced maize volatiles. Subsequently, we fractioned the silica extract by preparative gas-chromatography (GC) and by separating more polar from less polar compounds. In general, C. marginiventris preferred polar over non-polar compounds, but several fractions were attractive to the wasp, including one that contained compounds emitted in quantities below the detection threshold of the GC analysis. These results imply that the attractiveness of the volatile blend emitted by Spodopterainfested maize seedlings to C. marginiventris females is determined by a specific combination of attractive and repellent/masking compounds, including some that are emitted in very small amounts. Manipulating the emission of such minor compounds has the potential to greatly improve the attraction of certain parasitoids and enhance biological control of specific insect pests.
Plants under herbivore attack emit volatile organic compounds (VOCs) that can serve as foraging cues for natural enemies. Adult females of Lepidoptera, when foraging for host plants to deposit eggs, are commonly repelled by herbivore-induced VOCs, probably to avoid competition and natural enemies. Their larval stages, on the other hand, have been shown to be attracted to inducible VOCs. We speculate that this contradicting behavior of lepidopteran larvae is due to a need to quickly find a new suitable host plant if they have fallen to the ground. However, once they are on a plant they might avoid the sites with fresh damage to limit competition and risk of cannibalism by conspecifics, as well as exposure to natural enemies. To test this we studied the effect of herbivore-induced VOCs on the attraction of larvae of the moth Spodoptera littoralis and on their feeding behavior. The experiments further considered the importance of previous feeding experience on the responses of the larvae. It was confirmed that herbivore-induced VOCs emitted by maize plants are attractive to the larvae, but exposure to the volatiles decreased the growth rate of caterpillars at early developmental stages. Larvae that had fed on maize previously were more attracted by VOCs of induced maize than larvae that had fed on artificial diet. At relatively high concentrations synthetic green leaf volatiles, indicative of fresh damage, also negatively affected the growth rate of caterpillars, but not at low concentrations. In all cases, feeding by the later stages of the larvae was not affected by the VOCs. The results are discussed in the context of larval foraging behavior under natural conditions, where there may be a trade-off between using available host plant signals and avoiding competitors and natural enemies.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.