Ferroptosis is a non-apoptotic form of cell death induced by small molecules in specific tumour types, and in engineered cells overexpressing oncogenic RAS. Yet, its relevance in non-transformed cells and tissues is unexplored and remains enigmatic. Here, we provide direct genetic evidence that the knockout of glutathione peroxidase 4 (Gpx4) causes cell death in a pathologically relevant form of ferroptosis. Using inducible Gpx4−/− mice, we elucidate an essential role for the glutathione/Gpx4 axis in preventing lipid-oxidation-induced acute renal failure and associated death. We furthermore systematically evaluated a library of small molecules for possible ferroptosis inhibitors, leading to the discovery of a potent spiroquinoxalinamine derivative called Liproxstatin-1, which is able to suppress ferroptosis in cells, in Gpx4−/− mice, and in a pre-clinical model of ischaemia/reperfusion-induced hepatic damage. In sum, we demonstrate that ferroptosis is a pervasive and dynamic form of cell death, which, when impeded, promises substantial cytoprotection.
Oxidative stress in conjunction with glutathione depletion has been linked with various acute and chronic degenerative disorders, yet the molecular mechanisms have remained unclear. In contrast to the belief that oxygen radicals are detrimental to cells and tissues by unspecific oxidation of essential biomolecules, we now demonstrate that oxidative stress is sensed and transduced by glutathione peroxidase 4 (GPx4) into a-yet-unrecognized cell-death pathway. Inducible GPx4 inactivation in mice and cells revealed 12/15-lipoxygenase-derived lipid peroxidation as specific downstream event, triggering apoptosis-inducing factor (AIF)-mediated cell death. Cell death could be entirely prevented either by alpha-tocopherol (alpha-Toc), 12/15-lipoxygenase inhibitors, or siRNA-mediated AIF silencing. Accordingly, 12/15-lipoxygenase-deficient cells were highly resistant to glutathione depletion. Neuron-specific GPx4 depletion caused neurodegeneration in vivo and ex vivo, highlighting the importance of this pathway in neuronal cells. Since oxidative stress is common in the etiology of many human disorders, the identified pathway reveals promising targets for future therapies.
Oxygen radicals regulate many physiological processes, such as signaling, proliferation, and apoptosis, and thus play a pivotal role in pathophysiology and disease development. There are at least two thioredoxin reductase/ thioredoxin/peroxiredoxin systems participating in the cellular defense against oxygen radicals. At present, relatively little is known about the contribution of individual enzymes to the redox metabolism in different cell types. To begin to address this question, we generated and characterized mice lacking functional mitochondrial thioredoxin reductase (TrxR2). Ubiquitous Cre-mediated inactivation of TrxR2 is associated with embryonic death at embryonic day 13. TrxR2 ؊/؊ embryos are smaller and severely anemic and show increased apoptosis in the liver. The size of hematopoietic colonies cultured ex vivo is dramatically reduced. TrxR2-deficient embryonic fibroblasts are highly sensitive to endogenous oxygen radicals when glutathione synthesis is inhibited. Besides the defect in hematopoiesis, the ventricular heart wall of TrxR2 ؊/؊ embryos is thinned and proliferation of cardiomyocytes is decreased. Cardiac tissue-restricted ablation of TrxR2 results in fatal dilated cardiomyopathy, a condition reminiscent of that in Keshan disease and Friedreich's ataxia. We conclude that TrxR2 plays a pivotal role in both hematopoiesis and heart function.Reactive oxygen species (ROS)-generated mainly as a byproduct of the respiratory chain or by oxidases-are implicated in the pathogenesis and pathophysiology of a variety of human diseases such as cancer, cardiovascular, and degenerative disorders. A variety of cellular antioxidant systems control the balance of free intra-and extracellular oxygen radicals. Previous efforts have addressed the physiological role of superoxide dismutases, catalases, and glutathione (GSH) peroxidases in vivo, but the role of the thioredoxin/thioredoxin reductase/ peroxiredoxin system in ROS removal has only recently attracted attention.Thioredoxins are small redox-active proteins with an essential function in DNA metabolism and repair, transcription, and cell-cell communication (1). Acting through peroxiredoxins, they also efficiently protect cells from oxidative damage (27). Cytosolic (Trx1) and mitochondrial (Trx2) thioredoxins are required for proliferation and protection from apoptosis during early embryogenesis (26). Moreover, in chicken B cells, Trx2 is critically involved in the regulation of mitochondriondependent apoptosis (37). More recently, heart-specific overexpression of dominant-negative Trx1 was shown to be associated with increased oxidative stress and cardiac hypertrophy in mice (39).Trx activities are governed by thioredoxin reductases (TrxRs) that, in turn, use NADPH/H ϩ as the reducing agent (23). TrxRs are members of the pyridine nucleotide-disulfide oxidoreductase family, form homodimers, and possess two interacting redox-active centers. The C-terminal redox center contains a catalytically important selenocysteine (SeCys) (9,17,41). In mammals, three TrxRs...
Matsushita et al. investigated the role of the selenoenzyme glutathione peroxidae 4 (Gpx4) in T cell responses and found that loss of Gpx4 results in an intrinsic T cell developmental defect in the periphery, which leads to a failure to expand and protect from acute viral and parasitic infection.The defects were rescued with dietary supplementation of vitamin E. The Gp4−/− T cells accumulate membrane lipid peroxides and undergo cell death by ferroptosis.
Sixty-two explants from peripheral blood, bone marrow and cerebral fluid of children with acute lymphoblastic leukemia (ALL) and leukemic transformed non-Hodgkin lymphoma (NHL) were cultivated for at least 8 weeks. Although lymphatic cells persisted up to 16 weeks in tissue culture, no proliferation was observed in 54 cultures. From the remaining cultures, eight permanently growing cell lines were obtained. Five of these were EBNA (Epstein-Barr virus-specific nuclear antigen)-positive. Three, however, were ENBA-negative and lacked Epstein-Barr virus genomes. Two cell lines (KM-3 and SH-2) expressed neither B nor T cell characteristics. One line (JM) expressed T cell characteristics and complement receptors. The growing lymphatic cells represented leukemic cells, since the pattern of cytochemical staining and that of membrane receptors of lymphoblasts from the same donor prior to cultivation were identical. All leukemic cell lines were derived from patients in relapse. In contrast, no proliferation of leukemic cells occurred in explains from patients revealing the first manifestation of the disease. These results suggest enhanced growth potential of lymphoblasts resisting antileukemic therapy.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.