Hormone-sensitive lipase (HSL) is expressed predominantly in white and brown adipose tissue where it is believed to play a crucial role in the lipolysis of stored triglycerides (TG), thereby providing the body with energy substrate in the form of free fatty acids (FFA). From in vitro assays, HSL is known to hydrolyze TG, diglycerides (DG), cholesteryl esters, and retinyl esters. In the current study we have generated HSL knock-out mice and demonstrate three lines of evidence that HSL is instrumental in the catabolism of DG in vivo. First, HSL deficiency in mice causes the accumulation of DG in white adipose tissue, brown adipose tissue, skeletal muscle, cardiac muscle, and testis. Second, when tissue extracts were used in an in vitro lipase assay, a reduced FFA release and the accumulation of DG was observed in HSL knock-out mice which did not occur when tissue extracts from control mice were used. Third, in vitro lipolysis experiments with HSL-deficient fat pads demonstrated that the isoproterenol-stimulated release of FFA was decreased and DG accumulated intracellularly resulting in the essential absence of the isoproterenolstimulated glycerol formation typically observed in control fat pads. Additionally, the absence of HSL in white adipose tissue caused a shift of the fatty acid composition of the TG moiety toward increased long chain fatty acids implying a substrate specificity of the enzyme in vivo. From these in vivo results we conclude that HSL is the rate-limiting enzyme for the cellular catabolism of DG in adipose tissue and muscle. Hormone-sensitive lipase (HSL)1 is thought to be a key enzyme for the mobilization of triglycerides (TG) deposited in adipose tissue. Human HSL is composed of 775 amino acids that are encoded by a 2.9-kb mRNA transcribed from a single gene composed of 9 exons (1, 2). The mouse and the human genes are similar in size and share a high degree of sequence homology. A tissue-specific size variation has been observed in testis where an additional exon 13 kb upstream of exon 1 in adipose tissue gives rise to a 3.9-kb mRNA and a 1076-amino acid protein (3). The molecular basis of size variations in HSL mRNA in muscle, macrophages, and ovaries is unknown.HSL-mediated lipolysis is strictly controlled by hormones. The enzyme is activated by catecholamines and other lipolytic hormones upon phosphorylation by the cAMP-dependent protein kinase A and the lipotransin-mediated translocation of the enzyme from the cytoplasm to the lipid droplet (4 -6). Insulin, the major antilipolytic hormone, inhibits HSL through phosphodiesterase-3-dependent cAMP degradation and interference with the lipotransin-mediated enzyme translocation. Accordingly, mice with elevated protein kinase A activity exhibit increased lipolysis and a lean phenotype (7). Absence of perilipin in mice also resulted in leanness through constitutive activation of HSL (8). Conversely, mice that lack the insulin receptor substrate 2 become obese (9). These results imply that imbalances between lipid accumulation and fat mobilizati...
Oxidative stress is believed to play important roles in neuronal cell death associated with many different neurodegenerative conditions (e.g., Alzheimer's disease, Parkinson's disease, and cerebral ischemia), and it is believed also that apoptosis is an important mode of cell death in these disorders. Membrane lipid peroxidation has been documented in the brain regions affected in these disorders as well as in cell culture and in vivo models. We now provide evidence that 4-hydroxynonenal (HNE), an aldehydic product of membrane lipid peroxidation, is a key mediator of neuronal apoptosis induced by oxidative stress. HNE induced apoptosis in PC12 cells and primary rat hippocampal neurons. Oxidative insults (FeSO 4 and amyloid -peptide) induced lipid peroxidation, cellular accumulation of HNE, and apoptosis. Bcl-2 prevented apoptosis of PC12 cells induced by oxidative stress and HNE. Antioxidants that suppress lipid peroxidation protected against apoptosis induced by oxidative insults, but not that induced by HNE. Glutathione, which binds HNE, protected neurons against apoptosis induced by oxidative stress and HNE. PC12 cells expressing Bcl-2 exhibited higher levels of glutathione and lower levels of HNE after oxidative stress. Collectively, the data identify that HNE is a novel nonprotein mediator of oxidative stress-induced neuronal apoptosis and suggest that the antiapoptotic action of glutathione may involve detoxification of HNE.
Oxidation of LDL may contribute to atherogenesis, though the nature of the in vivo oxidant(s) remains obscure. Myeloperoxidase, the enzyme responsible for hypochlorous acid/hypochlorite (HOCl) production in vivo, is present in active form in human atherosclerotic lesions, and HOCl aggregates and transforms LDL into a high-uptake form for macrophages in vitro. Here we demonstrate HOCl-modified proteins in human lesions using an mAb raised against HOCl-modified LDL that recognizes HOCl-oxidized proteins but does not cross-react with Cu
The fatty acid composition, antioxidants, and the oxidation resistance of the low-density lipoproteins (LDL) from a number of different donors were determined. The oxidation resistance of LDL, as determined in vitro by the duration of the lag-phase in copper ion-induced oxidation, did not correlate with the alpha-tocopherol content of the LDL. By supplementating plasma with vitamin E, the alpha-tocopherol content of LDL could be increased from approximately 9 to 30 mol/mol LDL and also the oxidative resistance increased nearly linearly with increasing alpha-tocopherol content. The results indicate that alpha-tocopherol is an important, yet not the only parameter that determines the oxidation resistance of LDL.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.