Therapy with the oral antidiabetic agent troglitazone (Rezulin) has been associated with cases of severe hepatotoxicity and drug-induced liver failure, which led to the recent withdrawal of the product from the U.S. market. While the mechanism of this toxicity remains unknown, it is possible that chemically reactive metabolites of the drug play a causative role. In an effort to address this possibility, this study was undertaken to determine whether troglitazone undergoes metabolism in human liver microsomal preparations to electrophilic intermediates. Following incubation of troglitazone with human liver microsomes and with cDNA-expressed cytochrome P450 isoforms in the presence of glutathione (GSH), a total of five GSH conjugates (M1-M5) were detected and identified tentatively by LC-MS/MS analysis. In two cases (M1 and M5), the structures of the adducts were confirmed by NMR spectroscopy and/or by comparison with an authentic standard prepared by synthesis. The formation of GSH conjugates M1-M5 revealed the operation of two distinct metabolic activation pathways for troglitazone, one of which involves oxidation of the substituted chromane ring system to a reactive o-quinone methide derivative, while the second involves a novel oxidative cleavage of the thiazolidinedione (TZD) ring, potentially generating highly electrophilic alpha-ketoisocyanate and sulfenic acid intermediates. When troglitazone was administered orally to a rat, samples of bile were found to contain GSH conjugates which reflected the operation of these same metabolic pathways in vivo. The finding that metabolism of the TZD ring of troglitazone was catalyzed selectively by P450 3A enzymes is significant in light of the recent report that troglitazone is an inducer of this isoform in human hepatocytes. The implications of these results are discussed in the context of the potential for troglitazone to covalently modify hepatic proteins and to cause oxidative stress through redox cycling processes, either of which may play a role in drug-induced liver injury.
Raloxifene is a selective estrogen receptor modulator which is effective in the treatment of osteoporosis in postmenopausal women. We report herein that cytochrome P450 (P450)3A4 is inhibited by raloxifene in human liver microsomal incubations. The nature of the inhibition was irreversible and was NADPH- and preincubation time-dependent, with K(I) and k(inact) values estimated at 9.9 microM and 0.16 min(-1), respectively. The observed loss of P450 3A4 activity was attenuated partially by glutathione (GSH), implying the involvement of a reactive metabolite(s) in the inactivation process. Subsequently, GSH adducts of raloxifene were identified in incubations with human liver microsomes; substitution with GSH occurred at the 5- or 7-position of the benzothiophene moiety or at the 3'-position of the phenol ring, with the 7-glutathionyl derivative being most abundant based on LC/MS and NMR analyses. These adducts are postulated to derive from addition of GSH to raloxifene arene oxides followed by dehydration and aromatization. Alternatively, raloxifene may be oxidized to an extended quinone intermediate, which then is trapped by GSH conjugation. The bioactivation of raloxifene most likely is catalyzed by P450 3A4, since the formation of GSH adducts was almost abolished when liver microsomes were pretreated with ketoconazole or with an inhibitory anti-P450 3A4 IgG. The GSH adducts also were detected in incubations of raloxifene with rat or human hepatocytes, while the corresponding N-acetylcysteine adducts were identified in the bile and urine from rats treated orally with the drug at 5 mg/kg. Taken together, these data indicate that P450 3A4-mediated bioactivation of raloxifene in vitro is accompanied by loss of enzyme activity. The significance of these findings with respect to the clinical use of raloxifene remains to be determined.
In our effort to discover DPP-4 inhibitors with added benefits over currently commercially available DPP-4 inhibitors, MK-3102 (omarigliptin), was identified as a potent and selective dipeptidyl peptidase 4 (DPP-4) inhibitor with an excellent pharmacokinetic profile amenable for once-weekly human dosing and selected as a clinical development candidate. This manuscript summarizes the mechanism of action, scientific rationale, medicinal chemistry, pharmacokinetic properties, and human efficacy data for omarigliptin, which is currently in phase 3 clinical development.
Cytochrome P450 2C11 in rats was recently found to metabolize diclofenac into a highly reactive product that covalently bound to this enzyme before it could diffuse away and react with other proteins. To determine whether cytochromes P450 in human liver could catalyze a similar reaction, we have studied the covalent binding of diclofenac in vitro to liver microsomes of 16 individuals. Only three of 16 samples were found by immunoblot analysis to activate diclofenac appreciably to form protein adducts in a NADPH-dependent pathway. Cytochrome P450 2C9, which catalyzes the major route of oxidative metabolism of diclofenac to produce 4'-hydroxydiclofenac, did not appear to be responsible for the formation of the protein adducts, because sulfaphenazole, an inhibitor of this enzyme, did not affect protein adduct formation. In contrast, troleandomycin, an inhibitor of P450 3A4, inhibited both protein adduct formation and 5-hydroxylation of diclofenac. These findings were confirmed with the use of baculovirus-expressed human P450 2C9 and P450 3A4. One possible reactive intermediate that would be expected to bind covalently to liver proteins was the p-benzoquinone imine derivative of 5-hydroxydiclofenac. This product was formed by an apparent metal-catalyzed oxidation of 5-hydroxydiclofenac that was inhibited by EDTA, glutathione, and NADPH. The p-benzoquinone imine decomposition product bound covalently to human liver microsomes in vitro in a reaction that was inhibited by GSH. In contrast, GSH did not prevent the covalent binding of diclofenac to human liver microsomes. These results suggest that for appreciable P450-mediated bioactivation of diclofenac to occur in vivo, an individual may have to have both high activities of P450 3A4 and perhaps low activities of other enzymes that catalyze competing pathways of metabolism of diclofenac. Moreover, the p-benzoquinone imine derivative of 5-hydroxydiclofenac probably has a role in covalent binding in the liver only under the conditions where levels of NADPH, GSH, and other reducing agents would be expected to be low.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.