To improve performance and reduce power, processor designers employ advances that shrink feature sizes, lower voltage levels, reduce noise margins, and increase clock rates. However, these advances make processors more susceptible to transient faults that can affect correctness. While reliable systems typically employ hardware techniques to address soft-errors, software techniques can provide a lower-cost and more flexible alternative. This paper presents a novel, software-only, transient-fault-detection technique, called SWIFT. SWIFT efficiently manages redundancy by reclaiming unused instruction-level resources present during the execution of most programs. SWIFT also provides a high level of protection and performance with an enhanced control-flow checking mechanism. We evaluate an implementation of SWIFT on an Itanium 2 which demonstrates exceptional fault coverage with a reasonable performance cost. Compared to the best known single-threaded approach utilizing an ECC memory system, SWIFT demonstrates a 51% average speedup.
Traditional fault tolerance techniques typically utilize resources ineffectively because they cannot adapt to the changing reliability and performance demands of a system. This paper proposes software-controlled fault tolerance, a concept allowing designers and users to tailor their performance and reliability for each situation. Several software-controllable fault detection techniques are then presented: SWIFT, a software-only technique, and CRAFT, a suite of hybrid hardware/ software techniques. Finally, the paper introduces PROFiT, a technique which adjusts the level of protection and performance at fine granularities through software control. When coupled with software-controllable techniques like SWIFT and CRAFT, PROFiT offers attractive and novel reliability options.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.