On December 18, 1999, the Terra satellite was launched with a complement of five instruments including the Moderate Resolution Imaging Spectroradiometer (MODIS). Many geophysical products are derived from MODIS data including global snow-cover products. MODIS snow and ice products have been available through the National Snow and Ice Data Center (NSIDC) Distributed Active Archive Center (DAAC) since September 13, 2000. MODIS snow-cover products represent potential improvement to or enhancement of the currently available operational products mainly because the MODIS products are global and 500-m resolution, and have the capability to separate most snow and clouds. The MODIS snow-mapping algorithms are automated, which means that a consistent data set may be generated for longterm climate studies that require snow-cover information. Extensive quality assurance (QA) information is stored with the products. The MODIS snow product suite begins with a 500-m resolution, 2330-km swath snow-cover map, which is then gridded to an integerized sinusoidal grid to produce daily and 8-day composite tile products. The sequence proceeds to a climate-modeling grid (CMG) product at 0.05j resolution, with both daily and 8-day composite products. Each pixel of the daily CMG contains fraction of snow cover from 40% to 100%. Measured errors of commission in the CMG are low, for example, on the continent of Australia in the spring, they vary from 0.02% to 0.10%. Near-term enhancements include daily snow albedo and fractional snow cover. A case study from March 6, 2000, involving MODIS data and field and aircraft measurements, is presented to show some early validation work. D
Abstract-The first Moderate Resolution Imaging Spectroradiometer (MODIS) instrument is planned for launch by NASA in 1998. This instrument will provide a new and improved capability for terrestrial satellite remote sensing aimed at meeting the needs of global change research. The MODIS standard products will provide new and improved tools for moderate resolution land surface monitoring. These higher order data products have been designed to remove the burden of certain common types of data processing from the user community and meet the more general needs of global-to-regional monitoring, modeling, and assessment. The near-daily coverage of moderate resolution data from MODIS, coupled with the planned increase in high-resolution sampling from Landsat 7, will provide a powerful combination of observations. The full potential of MODIS will be realized once a stable and well-calibrated time-series of multispectral data has been established. In this paper the proposed MODIS standard products for land applications are described along with the current plans for data quality assessment and product validation.
Abstract:A suite of Moderate-Resolution Imaging Spectroradiometer (MODIS) snow products at various spatial and temporal resolutions from the Terra satellite has been available since February 2000. Standard products include daily and 8-day composite 500 m resolution swath and tile products (which include fractional snow cover (FSC) and snow albedo), and 0Ð05°resolution products on a climate-modelling grid (CMG) (which also include FSC). These snow products (from Collection 4 (C4) reprocessing) are mature and most have been validated to varying degrees and are available to order through the National Snow and Ice Data Center. The overall absolute accuracy of the well-studied 500 m resolution swath (MOD10 L2) and daily tile (MOD10A1) products is ¾93%, but varies by land-cover type and snow condition. The most frequent errors are due to snow/cloud discrimination problems, however, improvements in the MODIS cloud mask, an input product, have occurred in 'Collection 5' reprocessing. Detection of very thin snow (<1 cm thick) can also be problematic. Validation of MOD10 L2 and MOD10A1 applies to all higher-level products because all the higher-level products are all created from these products. The composited products may have larger errors due, in part, to errors propagated from daily products. Recently, new products have been developed. A fractional snow cover algorithm for the 500 m resolution products was developed, and is part of the C5 daily swath and tile products; a monthly CMG snow product at 0Ð05°resolution and a daily 0Ð25°resolution CMG snow product are also now available. Similar, but not identical products are also produced from the MODIS on the Aqua satellite, launched in May
The accurate knowledge of soil moisture and snow conditions is important for the skillful characterization of agricultural and hydrologic droughts, which are defined as deficits of soil moisture and streamflow, respectively. This article examines the influence of remotely sensed soil moisture and snow depth retrievals toward improving estimates of drought through data assimilation. Soil moisture and snow depth retrievals from a variety of sensors (primarily passive microwave based) are assimilated separately into the Noah land surface model for the period of 1979-2011 over the continental United States, in the North American Land Data Assimilation System (NLDAS) configuration. Overall, the assimilation of soil moisture and snow datasets was found to provide marginal improvements over the open-loop configuration. Though the improvements in soil moisture fields through soil moisture data assimilation were barely at the statistically significant levels, these small improvements were found to translate into subsequent small improvements in simulated streamflow. The assimilation of snow depth datasets were found to generally improve the snow fields, but these improvements did not always translate to corresponding improvements in streamflow, including some notable degradations observed in the western United States. A quantitative examination of the percentage drought area from root-zone soil moisture and streamflow percentiles was conducted against the U.S. Drought Monitor data. The results suggest that soil moisture assimilation provides improvements at short time scales, both in the magnitude and representation of the spatial patterns of drought estimates, whereas the impact of snow data assimilation was marginal and often disadvantageous.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.