The breastfeeding of infants by mothers who are infected with SARS-CoV-2 has become a dramatic healthcare problem. The WHO recommends that infected women should not abandon breastfeeding; however, there is still the risk of contact transmission. Convalescent donor milk may provide a defense against the aforementioned issue and can eliminate the consequences of artificial feeding. Therefore, it is vital to characterize the epitope-specific immunological landscape of human milk from women who recovered from COVID-19. We carried out a comprehensive ELISA-based analysis of blood serum and human milk from maternity patients who had recovered from COVID-19 at different trimesters of pregnancy. It was found that patients predominantly contained SARS-CoV-2 N-protein-specific immunoglobulins and had manifested the antibodies for all the antigens tested in a protein-specific and time-dependent manner. Women who recovered from COVID-19 at trimester I–II showed a noticeable decrease in the number of milk samples with sIgA specific to the N-protein, linear NTD, and RBD-SD1 epitopes, and showed an increase in samples with RBD conformation-dependent sIgA. S-antigens were found to solely induce a sIgA1 response, whereas N-protein sIgA1 and sIgA2 subclasses were involved in 100% and 33% of cases. Overall, the antibody immunological landscape of convalescent donor milk suggests that it may be a potential defense agent against COVID-19 for infants, conferring them with a passive immunity.
Monitoring of the level of the virus-neutralizing activity of serum immunoglobulins ensures that one can reliably assess the effectiveness of any protection against the SARS-CoV-2 infection. For SARS-CoV-2, the RBD-ACE2 neutralizing activity of sera is almost equivalent to the virus-neutralizing activity of their antibodies and can be used to assess the level of SARS-CoV-2 neutralizing antibodies. We are proposing an ELISA platform for performing a quantitative analysis of SARS-CoV-2 RBD-neutralizing antibodies, as an alternative to the monitoring of the virus-neutralizing activity using pseudovirus or live virus assays. The advantage of the developed platform is that it can be adapted to newly emerging virus variants in a very short time (12 weeks) and, thereby, provide quantitative data on the activity of SARS-CoV-2 RBD-neutralizing antibodies. The developed platform can be used to (1) study herd immunity to SARS-CoV-2, (2) monitor the effectiveness of the vaccination drive (revaccination) in a population, and (3) select potential donors of immune plasma. The protective properties of the humoral immune response in hospitalized patients and outpatients, as well as after prophylaxis with the two most popular SARS-CoV-2 vaccines in Russia, were studied in detail using this platform. The highest RBD-neutralizing activity was observed in the group of hospitalized patients. The protective effect in the group of individuals vaccinated with Gam-COVID-Vac vaccine was 25% higher than that in outpatients and almost four times higher than that in individuals vaccinated with the CoviVac vaccine.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.