Klebsiella pneumoniae (K. pneumoniae) is one of the most aggressive multidrug-resistant bacteria associated with human infections, resulting in high mortality and morbidity. We obtained 1190 K. pneumoniae isolates from different patients with urinary tract infections. The isolates were measured to determine their susceptibility regarding nine specific antibiotics. This study's primary goal is to evaluate the potential of infrared spectroscopy in tandem with machine learning to assess the susceptibility of K. pneumoniae within approximately 20 min following the first culture. Our results confirm that it was possible to classify the isolates into sensitive and resistant with a success rate higher than 80% for the tested antibiotics. These results prove the promising potential of infrared spectroscopy as a powerful method for a K. pneumoniae susceptibility test.
FTIR spectroscopy of Klebsiella pneumoniae in tandem with machine learning enables detection of ESBL producing isolates in 20 minutes after first culture, which helps physicians to treat bacterial infected patients appropriately.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.