Gastric cancer (GC), which includes cancer of the esophagus, the oesophagogastric junction, and the stomach fundus, is highly deadly with strong regional influence, Asia being the most affected. GC is often detected at late stages, with 30% of metastatic cases at diagnosis. Many authors have devised models to both unravel the mechanisms of GC development and to evaluate candidate therapeutics. Among these models, 2D-cell cultures are progressively replaced by 3D-cell cultures that recapitulate, much more comprehensively, tumor cellular and genetic heterogeneity, as well as responsiveness to environmental changes, such as exposure to drugs or irradiation. With respect to the specifics of GC, there are high hopes from such model systems, especially with the aim of identifying prognostic markers and novel drug targets.
The dismal prognosis of pancreatic ductal adenocarcinoma (PDAC) is mainly due to its rapidly acquired resistance to all conventional treatments. Despite drug‐specific mechanisms of resistance, none explains how these cells resist the stress induced by any kind of anticancer treatment. Activation of stress‐response pathways relies on the post‐translational modifications (PTMs) of involved proteins. Among all PTMs, those mediated by the ubiquitin family of proteins play a central role. Our aim was to identify alterations of ubiquitination, neddylation, and sumoylation associated with the multiresistant phenotype and demonstrate their implications in the survival of PDAC cells undergoing treatment. This approach pointed at an alteration of promyelocytic leukemia (PML) protein sumoylation associated with both gemcitabine and oxaliplatin resistance. We could show that this alteration of PML sumoylation is part of a general mechanism of drug resistance, which in addition involves the abnormal activation of NF‐αB and cAMP response element binding pathways. Importantly, using patient‐derived tumors and cell lines, we identified a correlation between the levels of PML expression and sumoylation and the sensitivity of tumors to anticancer treatments.—Swayden, M., Alzeeb, G., Masoud, R., Berthois, Y., Audebert, S., Camoin, L., Hannouche, L., Vachon, H., Gayet, O., Bigonnet, M., Roques, J., Silvy, F., Carrier, A., Dusetti, N., Iovanna, J. L., Soubeyran, P. PML hyposumoylation is responsible for the resistance of pancreatic cancer. FASEB J. 33, 12447–12463 (2019). http://www.fasebj.org
Gastric cancer (GC) is highly deadly. Three-dimensional (3D) cancer cell cultures, known as spheroids, better mimic tumor microenvironment (TME) than standard 2D cultures. Cancer-associated fibroblasts (CAF), a major cellular component of TME, promote or restrain cancer cell proliferation, invasion and resistance to drugs. We established spheroids from two human GC cell lines mixed with human primary CAF. Spheroid organization, analyzed by two-photon microscopy, showed CAF in AGS/CAF spheroids clustered in the center, but dispersed throughout in HGT-1/CAF spheroids. Such differences may reflect clonal specificities of GC cell lines and point to the fact that GC should be considered as a highly personalized disease.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.