There is a need for more objective and quantitative tools to replace microscopy in malaria diagnosis. Emphasis has recently been placed on alternative methods such as immunochromatography-based rapid tests. However, these tests provide only qualitative results. Two bio-molecules, parasite lactate dehydrogenase (pLDH) and histidine-rich proteins (HRPs), that are released by the intra-erythrocytic stages of the parasite offer certain specific characteristics that could potentially improve malaria diagnosis. In this paper, we describe a protocol for a unified sandwich ELISA that allows for the separate but concurrent measurement of pLDH and HRP biomolecules in aliquots taken from the same samples. Freshly drawn blood from a healthy unexposed adult male was used to serially dilute in vitro cultivated and synchronized ring stage Plasmodium falciparum parasites. Commercially available ELISA formats were modified to allow for the measurement of pLDH and HRP from aliquots of the same samples. The pLDH and HRP levels in the samples spiked with known numbers of infected red blood cells (iRBCs) were measured, and the values were used to generate standard graphs. The standard graphs were used to estimate the numbers of iRBCs in test samples. Serially diluted recombinant proteins were similarly used to generate a calibration curve, allowing for the expression of test results in nanograms of their respective recombinant protein. Levels of pLDH and HRPs were determined by using 1) P. falciparum culture material (cells and medium) 2) P. falciparum infected human blood (N = 6) samples, and 3) plasma from P. falciparum-infected patient (N = 22) samples. The parasite density of all culture and infected patient samples was also estimated by microscopy. Both pLDH and HRP levels correlated positively with the parasite density assessed by microscopy: Pearson correlation coefficient pLDH (r = 0.754, P < 0.0001, 95% CI: 0.47-0.89); HRP (r = 0.552, P < 0.007, 95% CI: 0.16-0.79). The HRPs seem to be released in larger quantities than pLDH (in a ratio of ~1 pLDH:~6 HRP), making the detection of HRP in culture material, blood, and plasma easier. The modified ELISA assay with quantitative measurement of pLDH and HRPs may provide a valuable tool for malaria research and patient management.
BackgroundCompared to expert malaria microscopy, malaria biomarkers such as Plasmodium falciparum histidine rich protein-2 (PfHRP-2), and PCR provide superior analytical sensitivity and specificity for quantifying malaria parasites infections. This study reports on parasite prevalence, sick visits parasite density and species composition by different diagnostic methods during a phase-I malaria vaccine trial.MethodsBlood samples for microscopy, PfHRP-2 and Plasmodium lactate dehydrogenase (pLDH) ELISAs and real time quantitative PCR (qPCR) were collected during scheduled (n = 298) or sick visits (n = 38) from 30 adults participating in a 112-day vaccine trial. The four methods were used to assess parasite prevalence, as well as parasite density over a 42-day period for patients with clinical episodes.ResultsDuring scheduled visits, qPCR (39.9%, N = 119) and PfHRP-2 ELISA (36.9%, N = 110) detected higher parasite prevalence than pLDH ELISA (16.8%, N = 50) and all methods were more sensitive than microscopy (13.4%, N = 40). All microscopically detected infections contained P. falciparum, as mono-infections (95%) or with P. malariae (5%). By qPCR, 102/119 infections were speciated. P. falciparum predominated either as monoinfections (71.6%), with P. malariae (8.8%), P. ovale (4.9%) or both (3.9%). P. malariae (6.9%) and P. ovale (1.0%) also occurred as co-infections (2.9%). As expected, higher prevalences were detected during sick visits, with prevalences of 65.8% (qPCR), 60.5% (PfHRP-2 ELISA), 21.1% (pLDH ELISA) and 31.6% (microscopy). PfHRP-2 showed biomass build-up that climaxed (1813±3410 ng/mL SD) at clinical episodes.Conclusion PfHRP-2 ELISA and qPCR may be needed for accurately quantifying the malaria parasite burden. In addition, qPCR improves parasite speciation, whilst PfHRP-2 ELISA is a potential predictor for clinical disease caused by P. falciparum.Trial RegistrationClinicalTrials.gov NCT00666380
We report here 10 complete polyprotein-coding sequences of dengue virus type 2 strains isolated from febrile patients who presented at Malindi District Hospital, Kenya, during a recent dengue fever outbreak. Phylogenetically, all the strains belonged to clonal serotype 2 of the Cosmopolitan genotype.
Kenya’s COVID-19 epidemic was slow to peak. It was seeded early in March 2020, and did not peak until late-July 2020 (wave 1), mid-November 2020 (wave 2) and late-March 2021 (wave 3). Here we present SARS-CoV-2 lineages associated with the three COVID-19 waves through analysis of 483 genomes, which included 167 Alpha (B.1.1.7), 57 Delta (B.1.617.2) and 12 Beta (B.1.351) variants of concerns (VOC) that dominated the third wave. In total, 35 lineages were identified. The early European lineages B.1 and B.1.1 were the first to be seeded in Kenya. The B.1 lineage continued to expand and remained the most dominant lineage accounting for 55.8% and 56.3% in waves 1 and 2 respectively. The alpha (B.1.1.7), delta (B.1.167.2) and beta (B.1.351) VOCs dominated in wave 3 at 59.0%, 20.1% and 4.2% respectively. Eventually, the delta variant took over at the tail end of wave 3 and at the time of going to press, it had become the major lineage in the whole country. Phylogenetic analysis suggested multiple introductions of variants from outside Kenya especially during the first and third wave. Phylogeny also highlighted local lineage diversification as local transmission events supervened. The data highlights the importance of genome surveillance in determining circulating variants to aid in public health interventions.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.