form the much simpler task of merely maintaining what is already formed.It is true, of course, that some parts of organisms do literally wear out. Human teeth, for instance, show wear similar to that of any tool subjected to friction, but this wear is no more a part of senescence than is the wearing away of replaceable epidermal cells. The senescence of human teeth consists not of their wearing out but of their lack of replacement when worn out.August Weismann (1891) was the first biologist of the evolutionary era to advance a theory of senescence. He believed that organisms must inevitably show a decline analogous to that of mechanical devices, but that, in addition, there was a specific death-mechanism designed by natural selection to eliminate the old, and therefore wornout, members of a population. He did not clearly indicate how such a mechanism could be produced by natural selection. He was likewise dubious about the exact nature of the deathmechanism, but indicated that it might involve a specific limitation on the number of divisions that somatic cells might undergo.Weismann's theory is subject to a number of criticisms, the most forceful of which are: 1) The fallacy of identifying senescence with mechanical wear, 2) the extreme rarity, in natural populations, of individuals that would be old enough to die of the postulated death-mechanism, 3) the failure of several decades of gerontological research to uncover any deathmechanism, and 4) the difficulties involved in visualizing how such a feature could be produced by natural selection.
JSTOR is a not-for-profit service that helps scholars, researchers, and students discover, use, and build upon a wide range of content in a trusted digital archive. We use information technology and tools to increase productivity and facilitate new forms of scholarship. For more information about JSTOR, please contact support@jstor.org..
While evolution by natural selection has long been a foundation for biomedical science, it has recently gained new power to explain many aspects of disease. This progress results largely from the disciplined application of what has been called the adaptations program. We show that this increasingly significant research paradigm can predict otherwise unsuspected facets of human biology, and that it provides new insights into the causes of medical disorders, such as those discussed below: 1. Infection. Signs and symptoms of the host-parasite contest can be categorized according to whether they represent adaptations or costs for host or parasite. Some host adaptations may have contributed to fitness in the Stone Age but are obsolete today. Others, such as fever and iron sequestration, have been incorrectly considered harmful. Pathogens, with their large populations and many generations in a single host, can evolve very rapidly. Acquisition of resistance to antibiotics is one example. Another is the recently demonstrated tendency to change virulence levels in predictable ways in response to changed conditions imposed incidentally by human activities. 2. Injuries and toxins. Mechanical injuries or stressful wear and tear are conceptually simpler than infectious diseases because they are not contests between conflicting interests. Plant-herbivore contests may often underlie chemical injury from the defensive secondary compounds of plant tissues. Nausea in pregnancy, and allergy, may be adaptations against such toxins. 3. Genetic factors. Common genetic diseases often result from genes maintained by other beneficial effects in historically normal environments. The diseases of aging are especially likely to be associated with early benefits. 4. Abnormal environments. Human biology is designed for Stone Age conditions. Modern environments may cause many diseases-for example, deficiency syndromes such as scurvy and rickets, the effects of excess consumption of normally scarce nutrients such as fat and salt, developmental diseases such as myopia, and psychological reactions to novel environments. The substantial benefits of evolutionary studies of disease will be realized only if they become central to medical curricula, an advance that may at first require the establishment of one or more research centers dedicated to the further development of Darwinian medicine.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with đź’™ for researchers
Part of the Research Solutions Family.