Objectives Artificial intelligence (AI), including predictive analytics, has great potential to improve the care of common chronic conditions with high morbidity and mortality. However, there are still many challenges to achieving this vision. The goal of this project was to develop and apply methods for enhancing chronic disease care using AI.
Methods Using a dataset of 27,904 patients with diabetes, an analytical method was developed and validated for generating a treatment pathway graph which consists of models that predict the likelihood of alternate treatment strategies achieving care goals. An AI-driven clinical decision support system (CDSS) integrated with the electronic health record (EHR) was developed by encapsulating the prediction models in an OpenCDS Web service module and delivering the model outputs through a SMART on FHIR (Substitutable Medical Applications and Reusable Technologies on Fast Healthcare Interoperability Resources) web-based dashboard. This CDSS enables clinicians and patients to review relevant patient parameters, select treatment goals, and review alternate treatment strategies based on prediction results.
Results The proposed analytical method outperformed previous machine-learning algorithms on prediction accuracy. The CDSS was successfully integrated with the Epic EHR at the University of Utah.
Conclusion A predictive analytics-based CDSS was developed and successfully integrated with the EHR through standards-based interoperability frameworks. The approach used could potentially be applied to many other chronic conditions to bring AI-driven CDSS to the point of care.
PURPOSE Patients with advanced solid tumors may receive intensive treatments near the end of life. This study aimed to create a machine learning (ML) model using limited features to predict 6-month mortality at treatment decision points (TDPs). METHODS We identified a cohort of adults with advanced solid tumors receiving care at a major cancer center from 2014 to 2020. We identified TDPs for new lines of therapy (LoTs) and confirmed mortality at 6 months after a TDP. Using extreme gradient boosting, ML models were developed, which used or derived features from a limited set of electronic health record data considering the literature, clinical relevance, variability, availability, and predictive importance using Shapley additive explanations scores. We predicted and observed 6-month mortality after a TDP and assessed a risk stratification strategy with different risk thresholds to support communication of chance of survival. RESULTS Four thousand one hundred ninety-two patients were included. Patients had 7,056 TDPs, for which the 6-month mortality increased from 17.9% to 46.7% after starting first to sixth LoT, respectively. On the basis of internal validation, models using both 111 (Full) or 45 (Limited-45) features accurately predicted 6-month mortality (area under the curve ≥ 0.80). Using a 0.3 risk threshold in the Limited-45 model, the observed 6-month survival was 34% (95% CI, 28 to 40) versus 81% (95% CI, 81 to 82) among those classified with low or higher chance of survival, respectively. The positive predictive value of the Limited-45 model was 0.66 (95% CI, 0.60 to 0.72). CONCLUSION We developed and validated a ML model using a limited set of 45 features readily derived from electronic health record data to predict 6-month prognosis in patients with advanced solid tumors. The model output may support shared decision making as patients consider the next LoT.
A five-color fluorescence-detection system for eight-channel plastic-microchip electrophoresis was developed. In the eight channels (with effective electrophoretic lengths of 10 cm), single-stranded DNA fragments were separated (with single-base resolution up to 300 bases within 10 min), and seventeen-loci STR genotyping for forensic human identification was successfully demonstrated. In the system, a side-entry laser beam is passed through the eight channels (eight A channels), with alternately arrayed seven sacrificial channels (seven B channels), by a technique called "side-entry laser-beam zigzag irradiation." Laser-induced fluorescence from the eight A channels and Raman-scattered light from the seven B channels are then simultaneously, uniformly, and spectroscopically detected, in the direction perpendicular to the channel array plane, through a transmission grating and a CCD camera. The system is therefore simple and highly sensitive. Because the microchip is fabricated by plastic-injection molding, it is inexpensive and disposable and thus suitable for actual use in various fields.
This prognostic study performed external validation of a machine learning model to predict 6-month mortality among patients with advanced solid tumors.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.