Effective development of targeted anticancer agents includes the definition of the optimal biological dose and biomarkers of drug activity. Currently available preclinical models are not optimal to this end. We aimed at generating a model for translational drug development using pancreatic cancer as a prototype. Resected pancreatic cancers from 14 patients were xenografted and expanded in successive groups of nude mice to develop cohorts of tumor-bearing mice suitable for drug therapy in simulated early clinical trials.The xenografted tumors maintain their fundamental genotypic features despite serial passages and recapitulate the genetic heterogeneity of pancreatic cancer. The in vivo platform is useful for integrating drug screening with biomarker discovery. Passages of tumors in successive cohorts of mice do not change their susceptibility to anticancer agents and represent a perpetual live bank, facilitating the application of new technologies that will result in the creation of an integrated stable database of tumor-drug response data and biomarkers.
Gefitinib is an inhibitor of the epidermal growth factor receptor (EGFR) tyrosine kinase with activity in non-small-cell lung cancer. Diarrhea and skin toxicity are prominent gefitinib-related adverse events that potentially limit its use. Gefitinib is a substrate for ABCG2 (ABCP, BCRP, MXR), a polymorphic efflux transporter protein that is highly expressed in the intestines and liver. Here we investigated associations between allelic variants of EGFR, ABCG2, and the transporter protein ABCB1 with diarrhea and skin toxicity in gefitinib-treated patients. One variant, a common functional single-nucleotide polymorphism (SNP) in the ABCG2 gene, was associated with diarrhea in 124 patients treated with oral gefitinib 250 mg once daily; seven (44%) of 16 patients heterozygous for ABCG2 421C>A (Q141K) developed diarrhea, versus only 13 (12%) of 108 patients homozygous for the wild-type sequence (P = .0046). However, this SNP was not associated with skin toxicity (P = .99). The finding suggests that patients with reduced ABCG2 activity due to a common genetic variant are at increased risk for substrate drug-induced diarrhea, with implications for optimizing treatment with such agents.
The purpose of this study was to evaluate the affinity of docetaxel for 14 transporter proteins and assess the functional significance of 17 variants in five genes involved in drug elimination. Among the transfected models investigated, OATP1B3 (SLCO1B3) was identified as the most efficient influx transporter for docetaxel. None of the observed genotypes (SLCO1B3, ABCB1, and ABCC2) was related with docetaxel clearance in 92 white patients (P > 0.17). However, the simultaneous presence of the CYP3A4*1B and CYP3A5*1A alleles was associated with a 64% increase in docetaxel clearance (P = 0.0015), independent of both sex and CYP3A activity (as determined using the erythromycin breath test). This haplotype was also associated with increased midazolam clearance in another population (P = 0.0198). An analysis of the CYP3A locus among CEPH-HapMap samples revealed that CYP3A4*1B is present exclusively among a subset of CYP3A5 expressors. Therefore, future studies should first stratify the population on the basis of CYP3A5 genotype and then compare CYP3A activity between individuals with and without the CYP3A4*1B allele.
The purpose of the study was to determine if the epidermal growth factor receptor (EGFR) tyrosine kinase inhibitors (TKIs), gefitinib and erlotinib, are substrates for the efflux transporter ABCG2, and to investigate the relevance of the ABCG2 421C>A (Q141K) polymorphism to the pharmacokinetics of gefitinib. Gefitinib and erlotinib transport in vitro was studied using HEK293 cells transfected with wild-type ABCG2 or a Q141K clone. Gefitinib pharmacokinetics was determined in 27 cancer patients. was. ABCG2 421C>A and ABCB1 3435C>T genotypes were determined using direct sequencing. Cells expressing wild-type ABCG2 exhibited lower intracellular accumulation of gefitinib and erlotinib at concentrations of 0.1 and 1 microM, and higher efflux at 1 microM than cells lacking ABCG2 (p < 0.05); no significant difference in cellular efflux and accumulation was observed in the variant cell line at lower concentrations nor in the three cell lines at 10 microM. In the presence of the ABCG2 inhibitor fumitremorgin C, cellular accumulation of gefitinib and erlotinib 1 microM was increased in wild-type (p < 0.05), but not in variant or null cells. Gefitinib accumulation during 28 days of treatment (C(ss,min)/C(1,min)) was higher in patients heterozygous at the ABCG2 421C>A locus than those with a wild-type genotype (median, 5.07 vs. 3.60, p = 0.004). No significant associations were observed between the ABCB1 3435C>T genotype and gefitinib pharmacokinetics. In conclusion, gefitinib and erlotinib are ABCG2 substrates, while they inhibit ABCG2 at higher concentrations. A functional variant of ABCG2 is associated with greater gefitinib accumulation at steady-state and may be relevant to toxicity and antitumor activity of EGFR TKIs.
The purpose of this study was to evaluate associations between germline epidermal growth factor receptor (EGFR) variants involved in transcriptional regulation and overall survival in white patients with non-small-cell lung cancer (NSCLC) treated with the EGFR tyrosine kinase inhibitor, gefitinib. Of 175 consecutive patients treated with oral gefitinib (250 mg/day), 170 (median age: 67 years; 72% men) were evaluable for genotyping and survival. Fifty-five patients (33%) had stable disease and 17 (10%) had an objective response. The most common of four haplotypes was G-C (EGFR*1) at the EGFR -216G>T and -191C>A loci (frequency, 0.45). After adjusting for performance status, previous platinum-containing chemotherapy and occurrence of skin rash or diarrhea during the first treatment cycle in patients with performance status 0 or 1 (N=139), the absence of EGFR*1 was associated with significantly better survival (hazard ratio: 0.54; 95% confidence interval: 0.32-0.91; P=0.015). The results may help identify patients with NSCLC who can benefit from gefitinib treatment.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.