Inflammation is a key feature of atherosclerosis and its clinical manifestations. The leukocyte count has emerged as a marker of inflammation that is widely available in clinical practice. Since inflammation plays a key role in atherosclerosis and its end results, discovering new biomarkers of inflammation becomes important in order to help diagnostic accuracy and provide prognostic information about coronary cardiac disease. In acute coronary syndromes and percutaneous coronary intervention, elevated levels of almost all subtypes of white blood cell counts, including eosinophils, monocytes, neutrophils, and lymphocytes, and neutrophil-lymphocyte ratio and eosinophil-leukocyte ratio constitute independent predictors of adverse outcomes. Eosinophil count and eosinophil-leukocyte ratio, in particular, emerge as novel biomarkers for risk stratification in patients with coronary artery disease. Since the presence of eosinophils denotes hypersensitivity inflammation and hypersensitivity associated with Kounis syndrome, this reality is essential for elucidating the etiology of inflammation in order to consider predictive and preventive measures and to apply the appropriate therapeutic methods.
The first reported human anaphylactic death is considered to be the Pharaoh Menes death, caused by a wasp sting. Currently, anaphylactic cardiovascular events represent one of most frequent medical emergencies. Rapid diagnosis, prompt and appropriate treatment can be life saving. The main concept beyond anaphylaxis lies to myocardial damage and ventricular dysfunction, thus resulting in cardiovascular collapse. Cardiac output depression due to coronary hypoperfusion from systemic vasodilation, leakage of plasma and volume loss due to increased vascular permeability, as well as reduced venous return, are regarded as the main causes of cardiovascular collapse. Clinical reports and experiments indicate that the human heart, in general, and the coronary arteries, in particular, could be the primary target of the released anaphylactic mediators. Coronary vasoconstriction and thrombosis induced by the released mediators namely histamine, chymase, tryptase, cathepsin D, leukotrienes, thromboxane and platelet activating factor (PAF) can result to further myocardial damage and anaphylaxis associated acute coronary syndrome, the socalled Kounis syndrome. Kounis syndrome with increase of cardiac troponin and other cardiac biomarkers, can progress to heart failure and cardiovascular collapse. In experimental anaphylaxis, cardiac reactions caused by the intracardiac histamine and release of other anaphylactic mediators are followed by secondary cardiovascular reactions, such as cardiac arrhythmias, atrioventricular block, acute myocardial ischemia, decrease in coronary blood flow and cardiac output, cerebral blood flow, left ventricular developed pressure (LVdp/dtmax) as well as increase in portal venous and coronary vascular resistance denoting vascular spasm. Clinically, some patients with anaphylactic myocardial infarction respond satisfactorily to appropriate interventional and medical therapy, while anti-allergic treatment with antihistamines, corticosteroids and fluid replacement might be ineffective. Therefore, differentiating the decrease of cardiac output due to myocardial tissue hypoperfusion from systemic vasodilation and leakage of plasma, from myocardial tissue due to coronary vasoconstriction and thrombosis might be challenging during anaphylactic cardiac collapse. Combined antiallergic, anti-ischemic and antithrombotic treatment seems currently beneficial. Simultaneous measurements of peripheral arterial resistance and coronary blood flow with newer diagnostic techniques including cardiac magnetic resonance imaging (MRI) and myocardial scintigraphy may help elucidating the pathophysiology of anaphylactic cardiovascular collapse, thus rendering treatment more rapid and effective.
Percutaneous transluminal coronary angioplasty with coronary stent implantation is a lifesaving medical procedure that has become, nowadays, the most frequent performed therapeutic procedure in medicine. Plain balloon angioplasty, bare metal stents, first and second generation drug-eluting stents, bioresorbable and bioabsorbable scaffolds have offered diachronically a great advance against coronary artery disease and have enriched our medical armamentarium. Stented areas constitute vulnerable sites for endothelial damage, endothelial dysfunction, flow turbulence, hemorheologic changes, platelet dysfunction, coagulation changes and fibrinolytic disturbances. Implant surface attracts several proteins such as albumin, fibronectin, fibrinogen, and complement that lead to complement system activation. Macrophages recognize the implant as foreign substance due to protein adsorption and its continuous presence results in macrophage differentiation and fusion into foreign body giant cells. Polymer coating, stent metallic platforms and the released drugs can act as strong antigenic complex that apply continuous, repetitive, persistent and chronic hypersensitivity irritation to the coronary intima. The concomitant administration of oral antiplatelet drugs and environmental exposures can induce hypersensitivity inflammation. A class of platelets, activated via high-affinity and low-affinity IgE hypersensitivity receptors FCγRI, FCγRII, FCεRI and FCεRII, can induce Kounis hypersensitivity-associated thrombotic syndrome inside the stented coronaries. Type III variant of this syndrome is diagnosed when coronary artery stent thrombosis is associated with thrombus infiltrated by eosinophils or mast cells and/or when coronary intima, media and adventitia adjacent to stent, is infiltrated by eosinophils or mast cells. Careful history of hypersensitivity reactions to all implanted materials and concomitant drugs with monitoring of inflammatory mediators as well as lymphocyte transformation studies to detect hypersensitivity must be undertaken in order to avoid disastrous consequences. Food and Drug Administration recommendations for coronary stent implantation should be applied also to bioresorbable scaffolds. Further studies with inert and non-allergenic implants are necessary.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.