We have molecularly cloned a unique acutely transforming replication-defective mouse type C virus (3611-MSV) and characterized its acquired oncogene. The viral genome closely resembles Moloney (M) murine leukemia virus (MuLV), except for a substitution in M-MuLV in the middle of p30 and the middle of the polymerase gene (pol). Heteroduplex analysis revealed that 2.4 kilobases of M-MuLV DNA were replaced by 1.2 kilobases of cellular DNA. The junctions between viral and cellular sequences were determined by DNA sequence analysis to be 517 nucleotides into the p30 sequence and 1,920 nucleotides into the polymerase sequence. Comparison of the transforming gene from 3611-MSV, designated v-raf, with previously isolated retrovirus oncogenes either by direct hybridization or by comparison of restriction fragments of their cellular homologs shows it to be unique. Transfection of NIH 3T3 cells with cloned 3611-MSV proviral DNA leads to highly efficient transformation and the recovered virus elicits tumors in mice typical of the 3611-MSV virus. Transfected NIH 3T3 cells express two 3611-MSV-specific polyproteins (P75 and P90), both of which contain NH2-terminal gag gene-encoded components linked to the acquired sequence (v-raf) translational product. The cellular homolog, c-raf, is present in one or two copies per haploid genome in mouse and human DNA.Retroviruses act as natural vectors for the transduction of at least some cellular genes, designated proto-oncogenes (1, 2), which bring about malignant transformation of infected cells. The cellular origin of a retroviral transforming gene (v-onc) was first demonstrated for v-src, the oncogene of Rous sarcoma virus (3, 4). Since then, 14 additional v-onc genes present in different acutely transforming retroviruses of avian and mammalian origin have been described, each similarly derived from cellular genes (c-onc) (1, 2). At least six of the v-onc genes code for functionally related tyrosine-specific protein kinases (5, 6), several of which appear to have a common evolutionary origin (7-9). Although the v-onc genes that do not encode protein kinase make up an evolutionarily more diverse group, some, such as v-kis and v-has, also appear to be members of gene families (10).The significance for human disease of c-onc genes had been purely hypothetical prior to the recent demonstration by DNA transfection that active forms of such genes may be associated with human cancers (11,12). Furthermore, human c-onc genes are associated with specific translocations characteristic of certain types of human cancer (13)(14)(15). These findings emphasize the potential importance of onc genes for an understanding of human malignancy and point to a need for a more complete accounting of such genes in human DNA.The isolation of retroviral oncogenes has in the past been sporadic and limited mainly to isolations from spontaneous tumors. More recently we have designed experiments to generate acutely transforming retroviruses by growth of IdUrd-induced endogenous type C viruses in chemicall...
Background: The Subcutaneous ICD (S-ICD) is safe and effective for sudden cardiac death prevention. However, patients in previous S-ICD studies had fewer comorbidities, less left ventricular dysfunction and received more inappropriate shocks (IAS) than in typical transvenous (TV)-ICD trials. The UNTOUCHED trial was designed to evaluate the IAS rate in a more typical, contemporary ICD patient population implanted with the S-ICD using standardized programming and enhanced discrimination algorithms. Methods: Primary prevention patients with left ventricular ejection fraction (LVEF) ≤ 35% and no pacing indications were included. Generation 2 or 3 S-ICD devices were implanted and programmed with rate-based therapy delivery for rates ≥ 250 beats per minute (bpm) and morphology discrimination for rates ≥200 and < 250 bpm. Patients were followed for 18 months. The primary endpoint was the IAS free rate compared to a 91.6% performance goal, derived from the results for the ICD-only patients in the MADIT-RIT study. Kaplan-Meier analyses were performed to evaluate event-free rates for IAS, all cause shock, and complications. Multivariable proportional hazard analysis was performed to determine predictors of endpoints. Results: S-ICD implant was attempted in 1116 patients and 1111 patients were included in post-implant follow-up analysis. The cohort had a mean age of 55.8±12.4 years, 25.6% women, 23.4% black race, 53.5% with ischemic heart disease, 87.7% with symptomatic heart failure and a mean LVEF of 26.4±5.8%. Eighteen-month freedom from IAS was 95.9% (Lower confidence limit LCL 94.8%). Predictors of reduced incidence of IAS were implanting the most recent generation of device, using the three-incision technique, no history of atrial fibrillation, and ischemic etiology. The 18-month all cause shock free rate was 90.6% (LCL 89.0%), meeting the prespecified performance goal of 85.8%. Conversion success rate for appropriate, discrete episodes was 98.4%. Complication free rate at 18 months was 92.7%. Conclusions: This study demonstrates high efficacy and safety with contemporary S-ICD devices and programming despite the relatively high incidence of co-morbidities in comparison to earlier S-ICD trials. The inappropriate shock rate (3.1% at one year) is the lowest reported for the S-ICD and lower than many TV ICD studies using contemporary programming to reduce IAS. Clinical Trial Registration: URL https://clinicaltrials.gov Unique Identifier NCT02433379
Previous studies by Guntaka et al. have shown that the unintegrated DNA intermediates of avian RNA tumor virus replication can be readily isolated from cultures of the quail tumor line QT-6 at 1 day after infection. The intermediates include double-stranded linear and covalently closed circular DNA species. Using the analysis procedure of Southern together with previously obtained information regarding the sites of action of certain restriction endonucleases on avian sarcoma virus DNA, we have further characterized the viral DNA intermediates. Evidence is presented that, relative to the RNA genome, most of the linear species possess a direct terminal sequence redundancy equivalent to 0.5 x 106 ± 0.3 x 106 daltons of double-stranded DNA. Some of the circular forms also possess a sequence redundancy of 0.21 x 106 ± 0.03 x 106 daltons.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.