Patients with significant three-vessel mesenteric arterial stenosis should be considered for prophylactic mesenteric arterial reconstruction. Mesenteric arterial reconstruction should be routine when these patients undergo aortic reconstruction for aneurysmal or occlusive disease.
For many years, device-associated infections and particularly device-associated nosocomial infections have been of considerable concern. Recently, this concern was heightened as a result of increased antibiotic resistance among the common causal agents of nosocomial infections, the appearance of new strains which are intrinsically resistant to the antibiotics of choice, and the emerging understanding of the role biofilms may play in device-associated infections and the development of increased antibiotic resistance. Pseudomonas aeruginosa and Candida albicans are consistently identified as some of the more important agents of nosocomial infections. In light of the recent information regarding device-associated nosocomial infections, understanding the nature of P. aeruginosa and C. albicans infections is increasingly important. These two microorganisms demonstrate: (1) an ability to form biofilms on the majority of devices employed currently, (2) increased resistance/tolerance to antibiotics when associated with biofilms, (3) documented infections noted for virtually all indwelling devices, (4) opportunistic pathogenicity, and (5) persistence in the hospital environment. To these five demonstrated characteristics, two additional areas of interest are emerging: (a) the as yet unclear relationship of these two microorganisms to those species of highly resistant Pseudomonas spp and Candida spp that are of increasing concern with device-related infections, and (b) the recent research showing the dynamic interaction of P. aeruginosa and C. albicans in patients with cystic fibrosis. An understanding of these two opportunistic pathogens in the context of their ecosystems/biofilms also has significant potential for the development of novel and effective approaches for the control and treatment of device-associated infections.
Transplantation of A2 or A2B kidneys into B and O patients is clinically equivalent to that of ABO-compatible transplantation when recipients are selected by low pretransplant anti-A titer histories. This approach increases access of blood group B recipients to kidneys.
BackgroundThe recently-identified causative agent of White-Nose Syndrome (WNS), Pseudogymnoascus destructans, has been responsible for the mortality of an estimated 5.5 million North American bats since its emergence in 2006. A primary focus of the National Response Plan, established by multiple state, federal and tribal agencies in 2011, was the identification of biological control options for WNS. In an effort to identify potential biological control options for WNS, multiply induced cells of Rhodococcus rhodochrous strain DAP96253 was screened for anti-P. destructans activity.ResultsConidia and mycelial plugs of P. destructans were exposed to induced R. rhodochrous in a closed air-space at 15°C, 7°C and 4°C and were evaluated for contact-independent inhibition of conidia germination and mycelial extension with positive results. Additionally, in situ application methods for induced R. rhodochrous, such as fixed-cell catalyst and fermentation cell-paste in non-growth conditions, were screened with positive results. R. rhodochrous was assayed for ex vivo activity via exposure to bat tissue explants inoculated with P. destructans conidia. Induced R. rhodochrous completely inhibited growth from conidia at 15°C and had a strong fungistatic effect at 4°C. Induced R. rhodochrous inhibited P. destructans growth from conidia when cultured in a shared air-space with bat tissue explants inoculated with P. destructans conidia.ConclusionThe identification of inducible biological agents with contact-independent anti- P. destructans activity is a major milestone in the development of viable biological control options for in situ application and provides the first example of contact-independent antagonism of this devastating wildlife pathogen.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.