PARP1 regulates the repair of DNA single-strand breaks generated directly, or during base excision repair (BER). However, the role of PARP2 in these and other repair mechanisms is unknown. Here, we report a requirement for PARP2 in stabilising replication forks that encounter BER intermediates through Fbh1-dependent regulation of Rad51. Whereas PARP2 is dispensable for tolerance of cells to SSBs or homologous recombination dysfunction, it is redundant with PARP1 in BER. Therefore, combined disruption of PARP1 and PARP2 leads to defective BER, resulting in elevated levels of replication-associated DNA damage owing to an inability to stabilise Rad51 at damaged replication forks and prevent uncontrolled DNA resection. Together, our results demonstrate how PARP1 and PARP2 regulate two independent, but intrinsically linked aspects of DNA base damage tolerance by promoting BER directly, and by stabilising replication forks that encounter BER intermediates.
Genomic integrity is constantly threatened by problems encountered by the replication fork. BRCA1, BRCA2 and a subset of Fanconi Anaemia proteins protect stalled replication forks from nuclease degradation through pathways involving RAD51. The contribution and regulation of BRCA1 in replication fork protection, and whether this relates to, or differs from, BRCA1's role in homologous recombination (HR) is not clear. Here we show that the canonical BRCA1-PALB2 interaction is not required for fork protection but instead BRCA1-BARD1 is regulated through a conformational change mediated by the phosphorylation-directed prolyl isomerase, PIN1. PIN1 activity enhances BRCA1-BARD1 interaction with RAD51 and consequently RAD51's presence at stalled replication structures. We identify patient missense variants in the regulated BRCA1-BARD1 regions which show poor nascent strand protection but remain proficient for HR, defining novel domains required for fork protection associated with cancer development. Together these findings reveal a previously unrecognised pathway that governs BRCA1-mediated replication fork protection. Main Text Fork progression can be slowed by conflicts with transcription, deoxyribonucleotide (dNTP) shortage or by difficult to replicate sequences, frequently causing fork stalling 1. In order to prevent stalled forks collapsing into DNA double strand breaks (DSBs), a number of responses are elicited including fork remodelling and subsequent nascent strand protection. Agents that cause replicative stress or compromise DNA Polymerase-α function result in a proportion of forks reversing (reviewed in 2,3). The regressed arm of nascent DNA in reversed forks resembles a single-ended DNA DSB which is protected from excessive resection by RAD51. Several factors contribute to RAD51-mediated fork protection including BRCA1/2, FANCA/D2, RAD51 paralogs, BOD1L, SETD1A, WRNIP and Abro1 2 .
Long double-stranded RNA may undergo hyper-editing by adenosine deaminases that act on RNA (ADARs), where up to 50% of adenosine residues may be converted to inosine. However, although numerous RNAs may undergo hyper-editing, the role for inosine-containing hyper-edited double-stranded RNA in cells is poorly understood. Nevertheless, editing plays a critical role in mammalian cells, as highlighted by the analysis of ADAR-null mutants. In particular, the long form of ADAR1 (ADAR1p150) is essential for viability. Moreover, a number of studies have implicated ADAR1p150 in various stress pathways. We have previously shown that ADAR1p150 localized to cytoplasmic stress granules in HeLa cells following either oxidative or interferon-induced stress. Here, we show that the Z-DNA-binding domain (ZαADAR1) exclusively found in ADAR1p150 is required for its localization to stress granules. Moreover, we show that fusion of ZαADAR1 to either green fluorescent protein (GFP) or polypyrimidine binding protein 4 (PTB4) also results in their localization to stress granules. We additionally show that the Zα domain from other Z-DNA-binding proteins (ZBP1, E3L) is likewise sufficient for localization to stress granules. Finally, we show that Z-RNA or Z-DNA binding is important for stress granule localization. We have thus identified a novel role for Z-DNA-binding domains in mammalian cells.
In response to replication hindrances, DNA replication forks frequently stall and are remodelled into a four-way junction. In such a structure the annealed nascent strand is thought to resemble a DNA double-strand break and remodelled forks are vulnerable to nuclease attack by MRE11 and DNA2. Proteins that promote the recruitment, loading and stabilisation of RAD51 onto single-stranded DNA for homology search and strand exchange in homologous recombination (HR) repair and inter-strand cross-link repair also act to set up RAD51-mediated protection of nascent DNA at stalled replication forks. However, despite the similarities of these pathways, several lines of evidence indicate that fork protection is not simply analogous to the RAD51 loading step of HR. Protection of stalled forks not only requires separate functions of a number of recombination proteins, but also utilises nucleases important for the resection steps of HR in alternative ways. Here we discuss how fork protection arises and how its differences with HR give insights into the differing contexts of these two pathways.
SUMOylation (small ubiquitin-like modifier) in the DNA double-strand break (DSB) response regulates recruitment, activity, and clearance of repair factors. However, our understanding of a role for deSUMOylation in this process is limited. Here we identify different mechanistic roles for deSUMOylation in homologous recombination (HR) and nonhomologous end joining (NHEJ) through the investigation of the deSUMOylase SENP2. We found that regulated deSUMOylation of MDC1 prevents excessive SUMOylation and its RNF4-VCP mediated clearance from DSBs, thereby promoting NHEJ. In contrast, we show that HR is differentially sensitive to SUMO availability and SENP2 activity is needed to provide SUMO. SENP2 is amplified as part of the chromosome 3q amplification in many cancers. Increased SENP2 expression prolongs MDC1 focus retention and increases NHEJ and radioresistance. Collectively, our data reveal that deSUMOylation differentially primes cells for responding to DSBs and demonstrates the ability of SENP2 to tune DSB repair responses.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.