Parallel transport of vectors in curved spacetimes generally results in a deficit angle between the directions of the initial and final vectors. We examine such holonomy in the Schwarzschild-Droste geometry and find a number of interesting features that are not widely known. For example, parallel transport around circular orbits results in a quantized band structure of holonomy invariance. We also examine radial holonomy and extend the analysis to spinors and to the Reissner-Nordström metric, where we find qualitatively different behavior for the extremal (Q = M ) case. Our calculations provide a toolbox that will hopefully be useful in the investigation of quantum parallel transport in Hilbert-fibered spacetimes.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.