Background: Data analysis has become crucial in the post genomic era where the accumulation of genomic information is mounting exponentially. Analyzing proteinprotein interactions in the context of the interactome is a powerful approach to understanding disease phenotypes. Results: We describe Proteinarium, a multi-sample protein-protein interaction network analysis and visualization tool. Proteinarium can be used to analyze data for samples with dichotomous phenotypes, multiple samples from a single phenotype or a single sample. Then, by similarity clustering, the network-based relations of samples are identified and clusters of related samples are presented as a dendrogram. Each branch of the dendrogram is built based on network similarities of the samples. The proteinprotein interaction networks can be analyzed and visualized on any branch of the dendrogram. Proteinarium's input can be derived from transcriptome analysis, whole exome sequencing data or any high-throughput screening approach. Its strength lies in use of gene lists for each sample as a distinct input which are further analyzed through protein interaction analyses. Proteinarium output includes the gene lists of visualized networks and PPI interaction files where users can analyze the network(s) on other platforms such as Cytoscape. In addition, since the dendrogram is written in Newick tree format, users can visualize it in other software platforms like Dendroscope, ITOL. Conclusions: Proteinarium, through the analysis and visualization of PPI networks, allows researchers to make important observations on high throughput data for a variety of research questions. Proteinarium identifies significant clusters of patients based on their shared network similarity for the disease of interest and the associated genes.Proteinarium is a command-line tool written in Java with no external dependencies and it is freely available at https://github.com/Armanious/Proteinarium.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.