A. Chermak has recently proved that to each saturated fusion system over a finite p-group, there is a unique associated centric linking system. B. Oliver extended Chermak's proof by showing that all the higher cohomological obstruction groups relevant to unique existence of centric linking systems vanish. Both proofs indirectly assume the classification of finite simple groups. We show how to remove this assumption, thereby giving a classification-free proof of the Martino-Priddy conjecture concerning the p-completed classifying spaces of finite groups. Our main tool is a 1971 result of the first author on control of fixed points by p-local subgroups. This result is directly applicable for odd primes, and we show how a slight variation of it allows applications for p = 2 in the presence of offenders.
Let p be a prime, and let S be a Sylow p-subgroup of a finite group G. J. Thompson (13; 14) has introduced a characteristic subgroup JR(S) and has proved the following results:(1.1) Suppose that p is odd. Then G has a normal p-complement if and only if C(Z(S)) and N(JR(S)) have normal p-complements.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.