The Escherichia coli chaperonins GroEL and GroES facilitate protein folding in an adenosine triphosphate (ATP)-dependent manner. After a single cycle of ATP hydrolysis by the adenosine triphosphatase (ATPase) activity of GroEL, the bi-toroidal GroEL formed a stable asymmetric ternary complex with GroES and nucleotide (bulletlike structures). With each subsequent turnover, ATP was hydrolyzed by one ring of GroEL in a quantized manner, completely releasing the adenosine diphosphate and GroES that were tightly bound to the other ring as a result of the previous turnover. The catalytic cycle involved formation of a symmetric complex (football-like structures) as an intermediate that accumulated before the rate-determining hydrolytic step. After one to two cycles, most of the substrate protein dissociated still in a nonnative state, which is consistent with intermolecular transfer of the substrate protein between toroids of high and low affinity. A unifying model for chaperonin-facilitated protein folding based on successive rounds of binding and release, and partitioning between committed and kinetically trapped intermediates, is proposed.
In vitro reconstitution of active ribulose bisphosphate carboxylase (Rubisco) from unfolded polypeptides is facilitated by the molecular chaperones: chaperonin-60 from Escherichia coli (groEL), yeast mitochondria (hsp60) or chloroplasts (Rubisco sub-unit-binding protein), together with chaperonin-10 from E. coli (groES), and Mg-ATP. Because chaperonins are ubiquitous, a conserved Mg-ATP-dependent mechanism exists that uses the chaperonins to facilitate the folding of some other proteins.
Assembly of foreign prokaryotic ribulose bisphosphate carboxylases (Rubiscos) in Escherichia coli requires both heat-shock proteins groEL and groES. GroEL is related to a chloroplast protein implicated in Rubisco assembly. Bacteria and chloroplasts therefore have a conserved mechanism that uses auxiliary proteins to assist in the assembly of Rubisco.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.