We present evidence for scale-independent misalignment of interstellar dust filaments and magnetic fields. We estimate the misalignment by comparing millimeter-wave dust-polarization measurements from Planck with filamentary structures identified in neutral-hydrogen (H i) measurements from Hi4PI. We find that the misalignment angle displays a scale independence (harmonic coherence) for features larger than the Hi4PI beamwidth (16.′2). We additionally find a spatial coherence on angular scales of
(
1
°
)
. We present several misalignment estimators formed from the auto- and cross-spectra of dust-polarization and H i-based maps, and we also introduce a map-space estimator. Applied to large regions of the high-Galactic-latitude sky, we find a global misalignment angle of ∼2°, which is robust to a variety of masking choices. By dividing the sky into small regions, we show that the misalignment angle correlates with the parity-violating TB cross-spectrum measured in the Planck dust maps. The misalignment paradigm also predicts a dust EB signal, which is of relevance in the search for cosmic birefringence but as yet undetected; the measurements of EB are noisier than those of TB, and our correlations of EB with misalignment angle are found to be weaker and less robust to masking choices. We also introduce an H i-based dust-polarization template constructed from the Hessian matrix of the H i intensity, which is found to correlate more strongly than previous templates with Planck dust B modes.
We report on the design and performance of the Bicep3 instrument and its first three-year data set collected from 2016 to 2018. Bicep3 is a 52 cm aperture refracting telescope designed to observe the polarization of the cosmic microwave background (CMB) on degree angular scales at 95 GHz. It started science observation at the South Pole in 2016 with 2400 antenna-coupled transition-edge sensor bolometers. The receiver first demonstrated new technologies such as large-diameter alumina optics, Zotefoam infrared filters, and flux-activated SQUIDs, allowing ∼10× higher optical throughput compared to the Keck design. Bicep3 achieved instrument noise equivalent temperatures of 9.2, 6.8, and 7.1
μ
K
CMB
s
and reached Stokes Q and U map depths of 5.9, 4.4, and 4.4 μK arcmin in 2016, 2017, and 2018, respectively. The combined three-year data set achieved a polarization map depth of 2.8 μK arcmin over an effective area of 585 square degrees, which is the deepest CMB polarization map made to date at 95 GHz.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.