BACKGROUNDHydroxychloroquine has been widely administered to patients with Covid-19 without robust evidence supporting its use. METHODSWe examined the association between hydroxychloroquine use and intubation or death at a large medical center in New York City. Data were obtained regarding consecutive patients hospitalized with Covid-19, excluding those who were intubated, died, or discharged within 24 hours after presentation to the emergency department (study baseline). The primary end point was a composite of intubation or death in a time-to-event analysis. We compared outcomes in patients who received hydroxychloroquine with those in patients who did not, using a multivariable Cox model with inverse probability weighting according to the propensity score. RESULTSOf 1446 consecutive patients, 70 patients were intubated, died, or discharged within 24 hours after presentation and were excluded from the analysis. Of the remaining 1376 patients, during a median follow-up of 22.5 days, 811 (58.9%) received hydroxychloroquine (600 mg twice on day 1, then 400 mg daily for a median of 5 days); 45.8% of the patients were treated within 24 hours after presentation to the emergency department, and 85.9% within 48 hours. Hydroxychloroquine-treated patients were more severely ill at baseline than those who did not receive hydroxychloroquine (median ratio of partial pressure of arterial oxygen to the fraction of inspired oxygen, 223 vs. 360). Overall, 346 patients (25.1%) had a primary end-point event (180 patients were intubated, of whom 66 subsequently died, and 166 died without intubation). In the main analysis, there was no significant association between hydroxychloroquine use and intubation or death (hazard ratio, 1.04, 95% confidence interval, 0.82 to 1.32). Results were similar in multiple sensitivity analyses.
Objective To characterize patients with coronavirus disease 2019 (covid-19) in a large New York City medical center and describe their clinical course across the emergency department, hospital wards, and intensive care units. Design Retrospective manual medical record review. Setting NewYork-Presbyterian/Columbia University Irving Medical Center, a quaternary care academic medical center in New York City. Participants The first 1000 consecutive patients with a positive result on the reverse transcriptase polymerase chain reaction assay for severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) who presented to the emergency department or were admitted to hospital between 1 March and 5 April 2020. Patient data were manually abstracted from electronic medical records. Main outcome measures Characterization of patients, including demographics, presenting symptoms, comorbidities on presentation, hospital course, time to intubation, complications, mortality, and disposition. Results Of the first 1000 patients, 150 presented to the emergency department, 614 were admitted to hospital (not intensive care units), and 236 were admitted or transferred to intensive care units. The most common presenting symptoms were cough (732/1000), fever (728/1000), and dyspnea (631/1000). Patients in hospital, particularly those treated in intensive care units, often had baseline comorbidities including hypertension, diabetes, and obesity. Patients admitted to intensive care units were older, predominantly male (158/236, 66.9%), and had long lengths of stay (median 23 days, interquartile range 12-32 days); 78.0% (184/236) developed acute kidney injury and 35.2% (83/236) needed dialysis. Only 4.4% (6/136) of patients who required mechanical ventilation were first intubated more than 14 days after symptom onset. Time to intubation from symptom onset had a bimodal distribution, with modes at three to four days, and at nine days. As of 30 April, 90 patients remained in hospital and 211 had died in hospital. Conclusions Patients admitted to hospital with covid-19 at this medical center faced major morbidity and mortality, with high rates of acute kidney injury and inpatient dialysis, prolonged intubations, and a bimodal distribution of time to intubation from symptom onset.
The national adoption of electronic health records (EHR) promises to make an unprecedented amount of data available for clinical research, but the data are complex, inaccurate, and frequently missing, and the record reflects complex processes aside from the patient's physiological state. We believe that the path forward requires studying the EHR as an object of interest in itself, and that new models, learning from data, and collaboration will lead to efficient use of the valuable information currently locked in health records.
Information retrieval studies that involve searching the Internet or marking phrases usually lack a well-defined number of negative cases. This prevents the use of traditional interrater reliability metrics like the kappa statistic to assess the quality of expert-generated gold standards. Such studies often quantify system performance as precision, recall, and F-measure, or as agreement. It can be shown that the average F-measure among pairs of experts is numerically identical to the average positive specific agreement among experts and that kappa approaches these measures as the number of negative cases grows large. Positive specific agreement-or the equivalent F-measure-may be an appropriate way to quantify interrater reliability and therefore to assess the reliability of a gold standard in these studies.
The growing amount of data in operational electronic health record (EHR) systems provides unprecedented opportunity for its re-use for many tasks, including comparative effectiveness research (CER). However, there are many caveats to the use of such data. EHR data from clinical settings may be inaccurate, incomplete, transformed in ways that undermine their meaning, unrecoverable for research, of unknown provenance, of insufficient granularity, and incompatible with research protocols. However, the quantity and real-world nature of these data provide impetus for their use, and we develop a list of caveats to inform would-be users of such data as well as provide an informatics roadmap that aims to insure this opportunity to augment CER can be best leveraged.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.