As a result of ecological and social drivers, the management of problems caused by wildlife is becoming more selective, often targeting specific animals. Narrowing the sights of management relies upon the ecology of certain 'problem individuals' and their disproportionate contribution to impacts upon human interests. We assess the ecological evidence for problem individuals and confirm that some individuals or classes can be both disproportionately responsible and more likely to reoffend. The benefits of management can sometimes be short-lived, and selective management can affect tolerance of wildlife for better or worse, but, when effectively targeted, selective management can bring benefits by mitigating impact and conflict, often in a more socially acceptable way.
This is an open access article under the terms of the Creative Commons Attribution License, which permits use, distribution and reproduction in any medium, provided the original work is properly cited.
Global eradication of human Guinea worm disease (dracunculiasis) has been set back by the emergence of infections in animals, particularly domestic dogs Canis familiaris. The ecology and epidemiology of this reservoir is unknown. We tracked dogs using GPS, inferred diets using stable isotope analysis and analysed correlates of infection in Chad, where numbers of Guinea worm infections are greatest. Dogs had small ranges that varied markedly among villages. Diets consisted largely of human staples and human faeces. A minority of ponds, mostly <200 m from dog-owning households, accounted for most dog exposure to potentially unsafe water. The risk of a dog having had Guinea worm was reduced in dogs living in households providing water for animals but increased with increasing fish consumption by dogs. Provision of safe water might reduce dog exposure to unsafe water, while prioritisation of proactive temephos (Abate) application to the small number of ponds to which dogs have most access is recommended. Fish might have an additional role as transport hosts for Guinea worm, by concentrating copepods infected with worm larvae.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.