Over 80% of triple-negative breast cancers (TNBC) express mutant p53 (mtp53) and some contain oncogenic gain-offunction (GOF) p53. We previously reported that GOF mtp53 R273H upregulates the chromatin association of mini chromosome maintenance (MCM) proteins MCM2-7 and PARP and named this the mtp53-PARP-MCM axis. In this study, we dissected the function and association between mtp53 and PARP using a number of different cell lines, patient-derived xenografts (PDX), tissue microarrays (TMA), and The Cancer Genome Atlas (TCGA) database. Endogenous mtp53 R273H and exogenously expressed R273H and R248W bound to nascent 5-ethynyl-2-deoxyuridine-labeled replicating DNA. Increased mtp53 R273H enhanced the association of mtp53 and PARP on replicating DNA. Blocking poly-ADP-ribose gylcohydrolase also enhanced this association. Moreover, mtp53 R273H expression enhanced overall MCM2 levels, promoted cell proliferation, and improved the synergistic cytotoxicity of treatment with the alkylating agent temozolomide in combination with the PARP inhibitor (PARPi) talazoparib. Staining of p53 and PARP1 in breast cancer TMAs and comparison with the TCGA database indicated a higher double-positive signal in basal-like breast cancer than in luminal A or luminal B subtypes. Higher PARP1 protein levels and PAR proteins were detected in mtp53 R273H than in wildtype p53-expressing PDX samples. These results indicate that mtp53 R273H and PARP1 interact with replicating DNA and should be considered as dual biomarkers for identifying breast cancers that may respond to combination PARPi treatments.
We recently documented that gain-of-function (GOF) mutant p53 (mtp53) R273H in triple negative breast cancer (TNBC) cells interacts with replicating DNA and PARP1. The missense R273H GOF mtp53 has a mutated central DNA binding domain that renders it unable to bind specifically to DNA, but maintains the capacity to interact tightly with chromatin. Both the C-terminal domain (CTD) and oligomerization domain (OD) of GOF mtp53 proteins are intact and it is unclear whether these regions of mtp53 are responsible for chromatin-based DNA replication activities. We generated MDA-MB-468 cells with CRISPR-Cas9 edited versions of the CTD and OD regions of mtp53 R273H. These included a frame-shift mtp53 R273Hfs387, which depleted mtp53 protein expression; mtp53 R273HΔ381-388, which had a small deletion within the CTD; and mtp53 R273HΔ347-393, which had both the OD and CTD regions truncated. The mtp53 R273HΔ347-393 existed exclusively as monomers and disrupted the chromatin interaction of mtp53 R273H. The CRISPR variants proliferated more slowly than the parental cells and mt53 R273Hfs387 showed the most extreme phenotype. We uncovered that after thymidine-induced G1/S synchronization, but not hydroxyurea or aphidicholin, R273Hfs387 cells displayed impairment of S-phase progression while both R273HΔ347-393 and R273HΔ381-388 displayed only moderate impairment. Moreover, reduced chromatin interaction of MCM2 and PCNA in mtp53 depleted R273Hfs387 cells post thymidine-synchronization revealed delayed kinetics of replisome assembly underscoring the slow S-phase progression. Taken together our findings show that the CTD and OD domains of mtp53 R273H play critical roles in mutant p53 GOF that pertain to processes associated with DNA replication.
The TP53 gene is often mutated in cancer, with missense mutations found in the central DNA binding domain, and less often in the C-terminal oligomerization domain (OD). These types of mutations are found in patients with the rare inherited cancer predisposition disorder called Li-Fraumeni syndrome. We previously found that mutant p53 (mtp53) R273H associates with replicating DNA and promotes the chromatin association of replication-associated proteins mini-chromosome maintenance 2 (MCM2), and poly ADP-ribose polymerase 1(PARP1). Herein, we created dual mutants in order to test if the oligomerization state of mtp53 R273H played a role in chromatin binding oncogenic gain-of-function (GOF) activities. We used site-directed mutagenesis to introduce point mutations in the OD in wild-type p53 (wtp53), and mtp53 R273H expressing plasmids. The glutaraldehyde crosslinking assay revealed that both wtp53 and mtp53 R273H formed predominantly tetramers, while the single OD mutant A347D, and the dual mtp53 R273H-A347D, formed predominantly dimers. The R337C, L344P, mtp53 R273H-R337C, and mtp53 R273H-L344P proteins formed predominantly monomers. Wtp53 was able to activate the cyclin-dependent kinase gene p21/waf and the p53 feedback regulator MDM2. As expected, the transactivation activity was lost for all the single mutants, as well as the mtp53 R273H-dual mutants. Importantly, mtp53 R273H and the dual oligomerization mutants, R273H-A347D, R273H-R337C, and R273H-L344P were able to interact with chromatin. Additionally, the dual oligomerization mutants, R273H-A347D, R273H-R337C, and R273H-L344P, maintained strong interactions with MCM2 and PARP1. Our findings suggest that while mtp53 R273H can form tetramers, tetramer formation is not required for the GOF associated chromatin interactions.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.