Abstract. In an outsourced database (ODB) system the database owner publishes data through a number of remote servers, with the goal of enabling clients at the edge of the network to access and query the data more efficiently. As servers might be untrusted or can be compromised, query authentication becomes an essential component of ODB systems. In this chapter we present three techniques to authenticate selection range queries and we analyze their performance over different cost metrics. In addition, we discuss extensions to other query types.
We show how to index mobile objects in one and two dimensions using efficient dynamic external memory data structures. The problem is motivated by real life applications in traffic monitoring, intelligent navigation and mobile communications domains. For the l-dimensional case, we give (i) a dynamic, external memory algorithm with guaranteed worst case performance and linear space and (ii) a practical approximation algorithm also in the dynamic, external memory setting, which has linear space and expected logarithmic query time. We also give an algorithm with guaranteed logarithmic query time for a restricted version of the problem. We present extensions of our techniques to two dimensions. In addition we give a lower bound on the number of I/O's needed to answer the d-dimensional problem. Initial experimental results and comparisons to traditional indexing approaches are also included.
Complex networks, such as biological, social, and communication networks, often entail uncertainty, and thus, can be modeled as probabilistic graphs. Similar to the problem of similarity search in standard graphs, a fundamental problem for probabilistic graphs is to efficiently answer k-nearest neighbor queries (k-NN), which is the problem of computing the k closest nodes to some specific node.In this paper we introduce a framework for processing k-NN queries in probabilistic graphs. We propose novel distance functions that extend well-known graph concepts, such as shortest paths. In order to compute them in probabilistic graphs, we design algorithms based on sampling. During k-NN query processing we efficiently prune the search space using novel techniques.Our experiments indicate that our distance functions outperform previously used alternatives in identifying true neighbors in real-world biological data. We also demonstrate that our algorithms scale for graphs with tens of millions of edges.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.