Microscale filamentation of 0.25 NA-focused, linearly and circularly polarized 1030 nm and 515 nm ultrashort laser pulses of variable pulse widths in fused silica, fluorite, and natural and synthetic diamonds demonstrates the Raman–Kerr effect in the form of critical pulse power magnitudes, proportional to squared wavelength and inversely proportional to laser pulse width of 0.3–10 ps. The first trend represents the common spectral relationship between the quantities, while the second indicates its time-integrated inertial contribution of Raman-active lattice polarization, appearing in transmission spectra via ultrafast optical-phonon Raman scattering. The optical-phonon contribution to the nonlinear polarization could come from laser field-induced spontaneous/stimulated Raman scattering and coherent optical phonons generated by electron–hole plasma with its clamped density in the nonlinear focus. Almost constant product value of the (sub)picosecond laser pulse widths and corresponding critical pulse powers for self-focusing and filamentation in the dielectrics (“critical pulse energy”) apparently implies constant magnitude of the nonlinear polarization and other “clamped” filamentation parameters at the given wavelength.
The ultrashort-laser photoexcitation and structural modification of buried atomistic optical impurity centers in crystalline diamonds are the key enabling processes in the fabrication of ultrasensitive robust spectroscopic probes of electrical, magnetic, stress, temperature fields, and single-photon nanophotonic devices, as well as in “stealth” luminescent nano/microscale encoding in natural diamonds for their commercial tracing. Despite recent remarkable advances in ultrashort-laser predetermined generation of primitive optical centers in diamonds even on the single-center level, the underlying multi-scale basic processes, rather similar to other semiconductors and dielectrics, are almost uncovered due to the multitude of the involved multi-scale ultrafast and spatially inhomogeneous optical, electronic, thermal, and structural elementary events. We enlighten non-linear wavelength-, polarization-, intensity-, pulsewidth-, and focusing-dependent photoexcitation and energy deposition mechanisms in diamonds, coupled to the propagation of ultrashort laser pulses and ultrafast off-focus energy transport by electron–hole plasma, transient plasma- and hot-phonon-induced stress generation and the resulting variety of diverse structural atomistic modifications in the diamond lattice. Our findings pave the way for new forthcoming groundbreaking experiments and comprehensive enlightening two-temperature and/or atomistic modeling both in diamonds and other semiconductor/dielectric materials, as well as innovative technological breakthroughs in the field of single-photon source fabrication and “stealth” luminescent nano/microencoding in bulk diamonds for their commercial tracing.
Ultrashort-pulse laser surface and bulk nano- and micromachining of dielectrics have multiple promising applications in micro-optics, microfluidics, and memory storage. The fundamental principles relate intrinsic inter-band multi-photon (MPA) and laser-induced intra-band free-carrier absorption (FCA) to particular ablation mechanisms and features. These principles are yet to be quantified into a complete set of basic experimental laser-matter interaction parameters, describing photoexcitation, relaxation, and final ablation. In this study, we considered the characteristic double-crater structure of single-shot ablation spots on dielectric surfaces and single-shot transmission spectra to extract crucial information about the underlying basic processes of ultrafast photoexcitation and laser energy deposition. Specifically, energy-dependent crater profiles and accompanying prompt self-phase modulation (SPM) spectral broadening were studied in single-shot surface ablation experiments on fluorite (CaF2) surface photo-excited by tightly focused 515- or 1030-nm, 300-fs laser pulses. Crater size dependence demonstrated two slopes, scaling proportionally to the squared focal 1/e-radius at higher energies (intensities) for larger ablated spots, and a much smaller squared 1/e-radius at lower energies (intensities) for (sub) micron-wide ablated spots, indicating a transition from 1D to 3D-ablation. As a result, these slopes were related to lower-intensity wavelength-dependent multi-photon inter-band transitions and wavelength-independent higher-intensity linear absorption in the emerging near-critical electron-hole plasma (EHP), respectively. Crater depth dependences on the local laser intensity fitted in the corresponding ranges by multi- and one-photon absorption provided the corresponding absorption coefficients. Spectral broadening measurements indicated even values for the red and blue shoulders of the laser pulse spectrum, representing the SPM effect in the weakly excited fluorite at the leading pulse front and providing the corresponding Kerr coefficient. In the second regime, the blue-shoulder broadening value saturated, indicating the appearance of near-critical plasma screening at the trailing pulse front, which is consistent with our calculations. These complementary experiments and related analysis provided an important set of key basic parameters, characterizing not only surface ablation, but also propagation of high-intensity ultrashort laser pulses in bulk fluorite, and enabling precise forecasting of optimal energy deposition for high-efficiency ultrashort-laser micro-structuring of this dielectric material.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.