In the tropics, thermal stratification (during warm conditions) may contribute to a shallowing of the mixed layer above the nutricline and a reduction in the transfer of nutrients to the surface lit-layer, ultimately limiting phytoplankton growth. Using remotely sensed observations and modelled datasets, we study such linkages in the northern Red Sea (NRS) - a typical tropical marine ecosystem. We assess the interannual variability (1998–2015) of both phytoplankton biomass and phenological indices (timing of bloom initiation, duration and termination) in relation to regional warming. We demonstrate that warmer conditions in the NRS are associated with substantially weaker winter phytoplankton blooms, which initiate later, terminate earlier and are shorter in their overall duration (~ 4 weeks). These alterations are directly linked with the strength of atmospheric forcing (air-sea heat fluxes) and vertical stratification (mixed layer depth [MLD]). The interannual variability of sea surface temperature (SST) is found to be a good indicator of phytoplankton abundance, but appears to be less important for predicting bloom timing. These findings suggest that future climate warming scenarios may have a two-fold impact on phytoplankton growth in tropical marine ecosystems: 1) a reduction in phytoplankton abundance and 2) alterations in the timing of seasonal phytoplankton blooms.
Data collected from different platforms in the Cretan Sea during the 2000s decade present evidence of gradually increasing salinity in the intermediate and deep intermediate layers after the middle of the decade. The observed gradual salt transport toward the deeper layers indicates contributions of dense water masses formed in various Aegean Sea subbasins. The accumulation of these saline and dense water masses in the Cretan Sea finally led to outflow from both Cretan Straits, with density greater than typical Levantine/Cretan Intermediate water but not dense enough to penetrate into the deep layers of the Eastern Mediterranean. We name this outflowing water mass as dense Cretan Intermediate Water (dCIW). A retrospective analysis of in situ data and literature references during the last four decades shows that similar events have occurred in the past in two occasions: (a) in the 1970s and (b) during the Eastern Mediterranean Transient (EMT) onset (1987)(1988)(1989)(1990)(1991). We argue that these salinity-driven Aegean outflows are mostly attributed to recurrent changes of the Eastern Mediterranean upper thermohaline circulation that create favorable dense water formation conditions in the Aegean Sea through salinity preconditioning. We identify these phenomena as ''EMT-like'' events and argue that in these cases internal thermohaline mechanisms dominate over atmospheric forcing in dense water production. However, intense atmospheric forcing over an already salinity preconditioned basin is indispensable for creating massive deep water outflow from the Cretan Sea, such as the EMT event.
Knowledge on large-scale biological processes in the southern Red Sea is relatively limited, primarily due to the scarce in situ, and satellite-derived chlorophyll-a (Chl-a) datasets. During summer, adverse atmospheric conditions in the southern Red Sea (haze and clouds) have long severely limited the retrieval of satellite ocean colour observations. Recently, a new merged ocean colour product developed by the European Space Agency (ESA)—the Ocean Color Climate Change Initiative (OC-CCI)—has substantially improved the southern Red Sea coverage of Chl-a, allowing the discovery of unexpected intense summer blooms. Here we provide the first detailed description of their spatiotemporal distribution and report the mechanisms regulating them. During summer, the monsoon-driven wind reversal modifies the circulation dynamics at the Bab-el-Mandeb strait, leading to a subsurface influx of colder, fresher, nutrient-rich water from the Indian Ocean. Using satellite observations, model simulation outputs, and in situ datasets, we track the pathway of this intrusion into the extensive shallow areas and coral reef complexes along the basin’s shores. We also provide statistical evidence that the subsurface intrusion plays a key role in the development of the southern Red Sea phytoplankton blooms.
The first two authors listed are primarily responsible for the conceptual and statistical framework for the paper. The contributing authors are listed in alphabetical order. The last two, also in alphabetical order, are the senior authors responsible for the ecological survey and physical modeling component of the effort, respectively. AbstractGlobal climate change has profound implications on species distributions and ecosystem functioning. In the coastal zone, ecological responses may be driven by various biogeochemical and physical environmental factors. Synergistic interactions can occur when the combined effects of stressors exceed their individual effects. The Red Sea, characterized by strong gradients in temperature, salinity, and nutrients along the latitudinal axis provides a unique opportunity to study ecological responses over a range of these environmental variables. Using multiple linear regression models integrating in situ, satellite and oceanographic data, we investigated the response of coral reef taxa to local stressors and recent climate variability. Taxa and functional groups responded to a combination of climate (temperature, salinity, air-sea heat fluxes, irradiance, wind speed), fishing pressure and biogeochemical (chlorophyll a and nutrients -phosphate, nitrate, nitrite) factors. The regression model for each species showed interactive effects of climate, fishing pressure and nutrient variables. The nature of the effects (antagonistic or synergistic) was dependent on the species and stressor pair. Variables consistently associated with the highest number of synergistic interactions included heat flux terms, temperature, and wind speed followed by fishing pressure. Hard corals and coralline algae abundance were sensitive to changing environmental conditions where synergistic interactions decreased their percentage cover. These synergistic interactions suggest that the negative effects of fishing pressure and eutrophication may exacerbate the impact of climate change on corals. A high number of interactions were also recorded for algae, however for this group, synergistic interactions increased algal abundance. This study is unique in applying regression analysis to multiple environmental variables simultaneously to understand stressor interactions in the field. The observed responses have important implications for understanding climate change impacts on marine ecosystems and whether managing local stressors, such as nutrient enrichment and fishing activities, may help mitigate global drivers of change. K E Y W O R D S coral reefs, fishing pressure, macroalgae, nutrients, synergistic interactions, temperature stress
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.