An enzyme preparation purified from Micrococcus luteus was shown to be specific for UVinduced pyrimidine dimers and was suitable for the detection of DNA excision repair systems. The wild-type Bacteroides fragilis Bf-2 strain and a mitomycin C-sensitive mutant (MTC25) had constitutive dimer excision systems which functioned efficiently under anaerobic and aerobic conditions. A UV-sensitive mutant (UVS9) had markedly reduced levels of the constitutive dimer excision systems under anaerobic and aerobic conditions. Since liquid holding recovery under aerobic conditions was inhibited by chloramphenicol whereas the final level of excision repair in B. fragilis Bf-2 was not affected, it is concluded that pyrimidine dimer removal is not the process responsible for increased physiological aerobic liquid holding recovery.
JSTOR is a not-for-profit service that helps scholars, researchers, and students discover, use, and build upon a wide range of content in a trusted digital archive. We use information technology and tools to increase productivity and facilitate new forms of scholarship. For more information about JSTOR, please contact support@jstor.org.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.