Energy-harvesting shock absorbers are able to recover the energy otherwise dissipated in the suspension vibration while simultaneously suppressing the vibration induced by road roughness. They can work as a controllable damper as well as an energy generator. An innovative design of regenerative shock absorbers is proposed in this paper, with the advantage of significantly improving the energy harvesting efficiency and reducing the impact forces caused by oscillation. The key component is a unique motion mechanism, which we called ‘mechanical motion rectifier (MMR)’, to convert the oscillatory vibration into unidirectional rotation of the generator. An implementation of a MMR-based harvester with high compactness is introduced and prototyped. A dynamic model is created to analyze the general properties of the motion rectifier by making an analogy between mechanical systems and electrical circuits. The model is capable of analyzing electrical and mechanical components at the same time. Both simulation and experiments are carried out to verify the modeling and the advantages. The prototype achieved over 60% efficiency at high frequency, much better than conventional regenerative shock absorbers in oscillatory motion. Furthermore, road tests are done to demonstrate the feasibility of the MMR shock absorber, in which more than 15 Watts of electricity is harvested while driving at 15 mph on a smooth paved road. The MMR-based design can also be used for other applications of vibration energy harvesting, such as from tall buildings or long bridges.
Energy-harvesting shock absorber is able to recover the energy otherwise dissipated in the suspension vibration while simultaneously suppress the vibration induced by road roughness. It can work as a controllable damper as well as an energy generator. An innovative design of regenerative shock absorbers is proposed in this paper, with the advantage of significantly improving energy harvesting efficiency and reducing the impact forces caused by oscillation. The key component is a unique motion mechanism, which we called “mechanical motion rectifier (MMR)”, to convert the suspension’s oscillatory vibration into unidirectional rotation of the generator. An implementation of motion rectifier based harvester with high compactness is introduced and prototyped. A dynamic model is created to analyze the general properties of the motion rectifier by making analogy between mechanical systems and electrical circuits. The model is capable of analyzing electrical and mechanical components at the same time. Both simulation and experiments are carried out to verify the modeling and the advantages. The prototype achieved over 60% efficiency at high frequency, much better than the conventional regenerative shock absorbers in oscillatory motion. Furthermore, road tests are done to verify the feasibility of the MMR shock absorber, in which more than 15 Watts’ electricity is harvested while driving at 15 mph. The motion rectifier based design can also be used for other applications of electromagnetic vibration energy harvesting.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.