A B S T R A C T PurposeLocal failure rates after radiation therapy (RT) for locally advanced non-small-cell lung cancer (NSCLC) remain high. Consequently, RT dose intensification strategies continue to be explored, including hypofractionation, which allows for RT acceleration that could potentially improve outcomes. The maximum-tolerated dose (MTD) with dose-escalated hypofractionation has not been adequately defined.
Patients and MethodsSeventy-nine patients with NSCLC were enrolled on a prospective single-institution phase I trial of dose-escalated hypofractionated RT without concurrent chemotherapy. Escalation of dose per fraction was performed according to patients' stratified risk for radiation pneumonitis with total RT doses ranging from 57 to 85.5 Gy in 25 daily fractions over 5 weeks using intensity-modulated radiotherapy. The MTD was defined as the maximum dose with Յ 20% risk of severe toxicity.
ResultsNo grade 3 pneumonitis was observed and an MTD for acute toxicity was not identified during patient accrual. However, with a longer follow-up period, grade 4 to 5 toxicity occurred in six patients and was correlated with total dose (P ϭ .004). An MTD was identified at 63.25 Gy in 25 fractions. Late grade 4 to 5 toxicities were attributable to damage to central and perihilar structures and correlated with dose to the proximal bronchial tree.
ConclusionAlthough this dose-escalation model limited the rates of clinically significant pneumonitis, dose-limiting toxicity occurred and was dominated by late radiation toxicity involving central and perihilar structures. The identified dose-response for damage to the proximal bronchial tree warrants caution in future dose-intensification protocols, especially when using hypofractionation.
To improve local control for inoperable non-small cell lung cancer (NSCLC), a phase I dose escalation study for locally advanced and medically inoperable patients was devised to escalate tumor dose while limiting the dose to organs at risk including the esophagus, spinal cord, and residual lung. Helical tomotherapy provided image-guided IMRT, delivered in a 5-week hypofractionated schedule to minimize the effect of accelerated repopulation. and administration of adjuvant chemotherapy following radiotherapy (p=0.015) to be independent risk factors for grade 2 pneumonitis. Only seven patients (15%) required narcotic analgesics (RTOG grade 2 toxicity) for esophagitis, with only 2.3% average weight loss during treatment. Best in-field gross response rates were 17% complete response, 43% partial response, 26% stable disease, and 6.5% in-field thoracic progression. The out-offield thoracic failure rate was 13%, and distal failure rate was 28%. The median survival was 18 months with 2-year overall survival of 46.8% ± 9.7% for this cohort, 50% of whom were stage IIIB and 30% stage IIIA. Dose escalation can be safely achieved in NSCLC with lower than expected rates of pneumonitis and esophagitis using hypofractionated image-guided IMRT. The maximum tolerated dose has yet to be reached.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.