Large antenna arrays enable directional precoding for Millimeter-Wave (mmWave) systems and provide sufficient link budget to combat the high path-loss at these frequencies. Due to atmospheric conditions and hardware malfunction, outdoor mmWave antenna arrays are prone to blockages or complete failures. This results in a modified array geometry, distorted far-field radiation pattern, and system performance degradation. Recent remote array diagnostic techniques have emerged as an effective way to detect defective antenna elements in an array with few diagnostic measurements. These techniques, however, require full and perfect channel state information (CSI), which can be challenging to acquire in the presence of antenna faults. This paper proposes a new remote array diagnosis technique that relaxes the need for full CSI and only requires knowledge of the incident angle-of-arrivals, i.e. partial channel knowledge. Numerical results demonstrate the effectiveness of the proposed technique and show that fault detection can be obtained with comparable number of diagnostic measurements required by diagnostic techniques based on full channel knowledge. In presence of channel estimation errors, the proposed technique is shown to out-perform recently proposed array diagnostic techniques.
Large antenna arrays enable directional precoding for Millimeter-Wave (mmWave) systems and provide sufficient link budget to combat the high path-loss at these frequencies. Due to atmospheric conditions and hardware malfunction, outdoor mmWave antenna arrays are prone to blockages or complete failures. This results in a modified array geometry, distorted far-field radiation pattern, and system performance degradation. Recent remote array diagnostic techniques have emerged as an effective way to detect defective antenna elements in an array with few diagnostic measurements. These techniques, however, require full and perfect channel state information (CSI), which can be challenging to acquire in the presence of antenna faults. This paper proposes a new remote array diagnosis technique that relaxes the need for full CSI and only requires knowledge of the incident angle-of-arrivals, i.e. partial channel knowledge. Numerical results demonstrate the effectiveness of the proposed technique and show that fault detection can be obtained with comparable number of diagnostic measurements required by diagnostic techniques based on full channel knowledge. In presence of channel estimation errors, the proposed technique is shown to out-perform recently proposed array diagnostic techniques.
Communication in the millimeter-wave (mmWave) band has recently been proposed to enable giga-bit-per-second data rates for next generation wireless systems. Physical layer security techniques have emerged as a simple and yet effective way to safeguard these systems against eavesdropping attacks. These techniques make use of the large antenna arrays available in mmWave systems to provide an array gain at the target receiver and degrade the signal quality at the eavesdropper. Despite their effectiveness, majority of these techniques are based on line-of-sight communication links between the transmitter and the receiver, and may fail in the presence of blockages or non-lineof-sight links. This paper builds upon previous work and extends physical layer security to the non-line-of-sight communication case and randomly located eavesdroppers. Specifically, the large dimensional antenna arrays in mmWave systems and the intrinsic characteristics of wireless channel are exploited to induce noiselike signals that jam eavesdroppers with sensitive receivers. Numerical results show that the proposed techniques provide higher secrecy rate when compared to conventional array and physical layer techniques based on line-of-sight links.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.