A continuous spectrophotometric method for measuring serum alkaline phosphatase activity is described. The effects of temperature, pH, substrate concentration, type and molarity of the buffer, sample size, cofactors, and inhibitors on the enzymatic hydrolysis of p-nitrophenyl phosphate were studied. The optimal conditions for assay of serum alkaline phosphatase at 30° were found to be 0.75 M 2-amino-2-methyl-1-propanol buffer, pH30° 10.15, 4 mmole substrate, and 100 µl. or less sample size. Studies of the factors affecting analytical precision-i.e., control of reaction temperature, of reagent manufacture, and of standardization-are discussed. The precision of this method was 2.3% (relative standard deviation) on 10 within day replicates and 5.0% on day-to-day replicates spread over a 5-week period. The range of activity for 258 apparently healthy adult blood donors was 6-110 mU./ml. (International milliunits per milliliter), with a mean of 49 and a standard deviation of 14.
The molar absorptivity of NADH at 340 nm has been determined by an indirect procedure in which high-purity glucose is phosphorylated by ATP in the presence of hexokinase, coupled to oxidation of the glucose-6-phosphate by NAD+ in the presence of glucose-6-phosphate dehydrogenase. The average value from 85 independent determinations is 6317 liter mol-1 cm-1 at 25 degrees C and pH 7.8. The overall uncertainty is -4.0 to +5.5 ppt (6292 to 6352 liter mol-1 cm-1), based on a standard error of the mean of 0.48 ppt and an estimate of systematic error of -2.6 to +4.1 ppt. Effects of pH, buffer, and temperature on the molar absorptivity are also reported.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.