An apparatus was developed to obtain, for the first time, 2D maps of the surface resistance of the inner surface of an operating superconducting radio-frequency niobium cavity by a low-temperature laser scanning microscopy technique. This allows identifying non-uniformities of the surface resistance with a spatial resolution of about one order of magnitude better than with earlier methods and surface resistance resolution of ~ 1 at 3.3 GHz. A signal-to-noise ratio of about 10 dB was obtained with 240 mW laser power and 1 Hz modulation frequency. The various components of the apparatus, the experimental procedure and results are discussed in detail in this contribution.
A complete spatial characterization (in second-order moments) of a doughnut-type beam from a pulsed transversely excited atmospheric CO2 laser is described. It includes the measurement of the orbital angular momentum carried by the beam. The key element in the characterization is the use of a cylindrical lens in addition to the usual spherical optics. Internal features of the beam that would have remained hidden if only spherical optics were employed were revealed by use of the cylindrical lens. The experimental results are compared and agree with a theoretical Laguerre-Gauss mode beam.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.