A big challenge in the composites industry is the availability of cheap raw lignocellulosic materials, potential candidates to replace slow growing trees, in order to minimize the production cost. Therefore, a variety of plants were studied and tested worldwide in composites manufacturing. The objective of this study was to investigate the technical feasibility of manufacturing particleboards from seaweed leaves (Possidonia oceanica—PO). The use of such a material may benefit both socioeconomic and environmental development since these leaves settle on seashores and decay. The results showed that an incorporation of up to 10% PO leaves did not significantly affect the mechanical properties of the board. Internal bond strength was more severely affected than the other mechanical properties. The incorporation of PO leaves up to 25% did not significantly improve the dimensional stability of the boards. Markedly, boards made from 50% wood particles and 50% PO leaves showed the best thickness swelling values. It is suggested that higher resin dosage and an alternative resin system, such as isocyanates, may improve the panel properties.
The objective of this paper was to investigate the technical feasibility of manufacturing low density insulation particleboards that were made from two renewable resources, namely hemp fibers (Cannabis sativa) and pine tree bark, which were bonded with a non-toxic methyl cellulose glue, as a binder. Four types of panels were made, which consisted of varying mixtures of tree bark and hemp fibers (tree bark to hemp fibers percentages of 90:10, 80:20, 70:30, and 60:40). An additional set of panels was made, consisting only of bark. The results showed that addition of hemp fibers to furnish improved mechanical properties of boards to reach an acceptable level. The thermal conductivity unfavorably increased as hemp content increased, though all values were still within the acceptable range. Based on cluster analysis, board type 70:30 (with 30% hemp content) produced the highest mechanical properties as well as the optimal thermal conductivity value. It is concluded that low density insulation boards can be successfully produced using these waste raw materials.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.