A noisy dataset can contain contradictory data. Contradictory data is synonymous to incorrect data and it is important that such data be investigated and evaluated when analysing a noisy dataset. Different approaches to dealing with contradictory data have been proposed by different researchers. For example [1, 2] proposed methods for identifying and removing contradictory data in noisy datasets. However, the removal of contradictory data from a noisy dataset will increase the incompleteness in the dataset thereby reducing the soundness of any information from such set of data. It is therefore important to identify and evaluate contradictory instances when analysing a large and noisy dataset. This will improve the soundness of the analysis from such a dataset. Evidently, the analysis of big data is identified as the next frontier for innovation and advancement of technology [3, 4]. There is therefore the need to identify appropriate approaches to dealing with contradictions in a large and noisy dataset. There are different forms of contradictions. For example, there are contradictions from the use of modal words, structural, subtle lexical contrasts, as well as world knowledge
Cyber criminals have become a formidable treat in today's world. This present reality has placed cloud computing platforms under constant treats of cyber-attacks at all levels, with an ever-evolving treat landscape. It has been observed that the number of threats faced in cloud computing is rising exponentially mainly due to its widespread adoption, rapid expansion and a vast attack surface. One of the front-line tools employed in defense against cyber-attacks is the Intrusion Detection Systems (IDSs). In recent times, an increasing number of researchers and cyber security practitioners alike have advocated the use of deception-based techniques in IDS and other cyber security defenses as against the use of traditional methods. This paper presents an extensive overview of the deception technology environment, as well as a review of current trends and implementation models in deception-based Intrusion Detection Systems. Issues mitigating the implementation of deception based cyber security defenses are also investigated.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.