The Central Dogma highlights the mutualistic functions of protein and nucleic acid biopolymers, and this synergy appears prominently in the membraneless organelles widely distributed throughout prokaryotic and eukaryotic organisms alike. Ribonucleoprotein granules (RNPs), which are complex coacervates of RNA with proteins, are a prime example of these membranelles organelles and underly multiple essential cellular functions. Inspired by the highly dynamic character of these organelles and the recent studies that ATP both inhibits and templates phase separation of the fused in sarcoma (FUS) protein implicated in several neurodegenerative diseases, we explored the RNA templated ordering of a single motif of the Aβ peptide of Alzheimer’s disease. We now know that this strong cross-β propensity motif alone assembles through a liquid-like coacervate phase that can be externally templated to form distinct supramolecular assemblies. Now we provide evidence that structured phosphates, ranging from complex structures like double stranded and quadraplex DNA to simple trimetaphosphate, differentially impact the liquid to solid phase transition necessary for paracrystalline assembly. The results from this simple model illustrate the potential of ordered environmental templates in the transition to potentially irreversible pathogenic assemblies and provides insight into the ordering dynamics necessary for creating functional synthetic polymer co-assemblies.
Living cells use chemical building blocks (biopolymers) to form fascinatingly complex architectures, which in turn display multiple functions necessary for the cell life cycle. The mechanisms and order of events by which forerunners of these extant biopolymers formed on the early earth remains under intensive investigation. Prebiotic chemistry research has recently provided ample evidence that both peptide and nucleic‐acid (NA) precursors could be formed in a primordial environment through common synthetic routes. However, until recently, studies directed at the design of functional supramolecular structures have focused primarily on assemblies made of either peptides or NAs. The emerging discipline of Systems Chemistry now develops dynamic supramolecular interactions to capture the complex emergent properties of reaction networks. Accordingly, we review here recent work that reveals mutualistic nucleic acid/peptide co‐assembly, and approaches toward utility of these architectures as functional materials capable of substrate binding, catalysis, replication, and translation. Many of these new approaches to smart soft biomaterials and functional bio‐nanotechnology provide insight and extend our understanding of the possible origins of living systems.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.