MicroRNAs are small, non-protein coding RNA molecules known to regulate the expression of genes by binding to the 3′UTR region of mRNAs. MicroRNAs are produced from longer transcripts which can code for more than one mature miRNAs. miRGen 2.0 is a database that aims to provide comprehensive information about the position of human and mouse microRNA coding transcripts and their regulation by transcription factors, including a unique compilation of both predicted and experimentally supported data. Expression profiles of microRNAs in several tissues and cell lines, single nucleotide polymorphism locations, microRNA target prediction on protein coding genes and mapping of miRNA targets of co-regulated miRNAs on biological pathways are also integrated into the database and user interface. The miRGen database will be continuously maintained and freely available at http://www.microrna.gr/mirgen/.
Energy proportionality and workload consolidation are important objectives towards increasing efficiency in largescale datacenters. Our work focuses on achieving these goals in the presence of applications with µs-scale tail latency requirements. Such applications represent a growing subset of datacenter workloads and are typically deployed on dedicated servers, which is the simplest way to ensure low tail latency across all loads. Unfortunately, it also leads to low energy efficiency and low resource utilization during the frequent periods of medium or low load.We present the OS mechanisms and dynamic control needed to adjust core allocation and voltage/frequency settings based on the measured delays for latency-critical workloads. This allows for energy proportionality and frees the maximum amount of resources per server for other background applications, while respecting service-level objectives. Monitoring hardware queue depths allows us to detect increases in queuing latencies. Carefully coordinated adjustments to the NIC's packet redirection table enable us to reassign flow groups between the threads of a latency-critical application in milliseconds without dropping or reordering packets. We compare the efficiency of our solution to the Pareto-optimal frontier of 224 distinct static configurations. Dynamic resource control saves 44%-54% of processor energy, which corresponds to 85%-93% of the Pareto-optimal upper bound. Dynamic resource control also allows background jobs to run at 32%-46% of their standalone throughput, which corresponds to 82%-92% of the Pareto bound.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.