Consolidation of motor skills after training can occur in a time- or sleep-dependent fashion. Recent studies revealed time-dependent consolidation as a common feature of visuomotor tasks. We have previously shown that anodal transcranial direct current stimulation (tDCS) in combination with repeated motor training benefits consolidation by the induction of offline skill gains in a complex visuomotor task, preventing the regular occurrence of skill loss between days. Here, we asked 2 questions: What is the time course of consolidation between days for this task and do exogenously induced offline gains develop as a function of time or overnight sleep? We found that both the development of offline skill loss in sham-stimulated subjects and offline skill gains induced by anodal tDCS critically depend on the passage of time after training, but not on overnight sleep. These findings support the view that tDCS interacts directly with the physiological consolidation process. However, in a control experiment, anodal tDCS applied after the training did not induce skill gains, implying that coapplication of tDCS and training is required to induce offline skill gains, pointing to the initiation of consolidation already during training.
Hand and finger movements are mostly controlled through crossed corticospinal projections from the contralateral hemisphere. During unimanual movements, activity in the contralateral hemisphere is increased while the ipsilateral hemisphere is suppressed below resting baseline. Despite this suppression, unimanual movements can be decoded from ipsilateral activity alone. This indicates that ipsilateral activity patterns represent parameters of ongoing movement, but the origin and functional relevance of these representations is unclear. In this study, we asked whether ipsilateral representations are caused by active movement or whether they are driven by sensory input. Participants alternated between performing single finger presses and having fingers passively stimulated while we recorded brain activity using high-field (7T) functional imaging. We contrasted active and passive finger representations in sensorimotor areas of ipsilateral and contralateral hemispheres. Finger representations in the contralateral hemisphere were equally strong under passive and active conditions, highlighting the importance of sensory information in feedback control. In contrast, ipsilateral finger representations in the sensorimotor cortex were stronger during active presses. Furthermore, the spatial distribution of finger representations differed between hemispheres: the contralateral hemisphere showed the strongest finger representations in Brodmann areas 3a and 3b, whereas the ipsilateral hemisphere exhibited stronger representations in premotor and parietal areas. Altogether, our results suggest that finger representations in the two hemispheres have different origins: contralateral representations are driven by both active movement and sensory stimulation, whereas ipsilateral representations are mainly engaged during active movement. NEW & NOTEWORTHY Movements of the human body are mostly controlled by contralateral cortical regions. The function of ipsilateral activity during movements remains elusive. Using high-field neuroimaging, we investigated how human contralateral and ipsilateral hemispheres represent active and passive finger presses. We found that representations in contralateral sensorimotor cortex are equally strong during both conditions. Ipsilateral representations were mostly present during active movement, suggesting that sensorimotor areas do not receive direct sensory input from the ipsilateral hand.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.