This paper presents basic concepts of inverse and optimization problems. Deterministic and stochastic minimization techniques in finite and infinite dimensional spaces are revised; advantages and disadvantages of each of them are discussed and a hybrid technique is introduced. Applications of the techniques discussed for inverse and optimization problems in heat transfer are presented
An inverse Boundary Element Method (BEM) procedure has been used to determine unknown heat transfer coefficients on surfaces of arbitrarily shaped solids. The procedure is noniterative and cost effective, involving only a simple modification to any existing steady-state heat conduction BEM algorithm. Its main advantage is that this method does not require any knowledge of, or solution to, the fluid flow field. Thermal boundary conditions can be prescribed on only part of the boundary of the solid object, while the heat transfer coefficients on boundaries exposed to a moving fluid can be partially or entirely unknown. Over-specified boundary conditions or internal temperature measurements on other, more accessible boundaries are required in order to compensate for the unknown conditions. An ill-conditioned matrix results from the inverse BEM formulation, which must be properly inverted to obtain the solution to the ill-posed problem. Accuracy of numerical results has been demonstrated for several steady two-dimensional heat conduction problems including sensitivity of the algorithm to errors in the measurement data of surface temperatures and heat fluxes.
A Boundary Element Method (BEM) implementation for the solution of inverse or ill-posed two-dimensional Poisson problems of steady heat conduction with heat sources and sinks is proposed. The procedure is noniterative and cost effective, involving only a simple modification to any existing BEM algorithm. Thermal boundary conditions can be prescribed on only part of the boundary of the solid object while the heat sources can be partially or entirely unknown. Overspecified boundary conditions or internal temperature measurements are required in order to compensate for the unknown conditions. The weighted residual statement, inherent in the BEM formulation, replaces the more common iterative least-squares (L2) approach, which is typically used in this type of ill-posed problem. An ill-conditioned matrix results from the BEM formulation, which must be properly inverted to obtain the solution to the ill-posed steady heat conduction problem. A singular value decomposition (SVD) matrix solver was found to be more effective than Tikhonov regularization for inverting the matrix. Accurate results have been obtained for several steady two-dimensional heat conduction problems with arbitrary distributions of heat sources where the analytic solutions were available.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.