Summary In any shape optimization framework and specifically in the context of computational fluid dynamics, a robust and reliable grid deformation tool is necessary to undertake the adaptation of the computational mesh to the updated boundaries at each optimization cycle. Grid deformation has its share of challenges, namely, to maintain high mesh quality (avoid distorted elements and tangles) even when dealing with extreme deformations. In this work a novel grid deformation algorithm, the finite transformation rigid motion mesh morpher (FT‐R3M) is proposed. FT‐R3M is essentially a mesh‐free grid deformation approach, since it does not require any inertial quantities and it gracefully propagates the movement of the boundaries (surface mesh) to the internal nodes of the mesh (volume mesh), by keeping the motion of its parts (referred to as stencils) as‐rigid‐as‐possible. It is an optimization‐based method, which means that the interior nodes of the computational mesh are displaced to minimize a distortion metric related to the elastic deformation energy, by favoring rigidity in critical directions, thus being able to handle mesh anisotropies very efficiently. Results are presented for three test cases; a rotated airfoil with a mesh appropriate for viscous flow; a simulation of a low Reynolds duct case; a beam.
In any optimization framework, a robust and reliable mesh morpher is necessary to undertake the adaptation of the CFD mesh to the updated boundaries at each optimization cycle. Morphing has its share of challenges, namely to maintain high mesh quality (avoid distorted elements and tangles) even during extreme deformations. In this work, the Finite Transformation Rigid Motion Mesh Morpher (FT-R3M) is presented, an improved version of the Rigid Motion Mesh Morpher [5], that eliminates the need for sub-cycling, making it more efficient in terms of CPU time. FT-R3M, which bears some similarities to [4], is a mesh-less mesh morphing tool, since it does not require any inertial quantities, that gracefully propagates the movement of the boundaries (surface mesh) to the internal nodes of the mesh (volume mesh), by keeping the motion of its parts (referred to as stencils) as-rigidas-possible. It is an optimization-based method, which means that the interior nodes of the computational mesh are displaced to minimize a distortion metric, namely the deformation energy. Since FT-R3M is minimizing the deformation energy between the initial and the final configuration, as opposed to R3M, in which the deformation energy is minimized from each sub-cycle to another, there is a significant gain in terms of the quality of the resulting mesh. The efficiency of the morpher proposed in this article will be demonstrated in small and medium-size cases.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.