This article summarizes our recent work and developments on SMPI, a flexible simulator of MPI applications. In this tool, we took a particular care to ensure our simulator could be used to produce fast and accurate predictions in a wide variety of situations. Although we did build SMPI on SimGrid whose speed and accuracy had already been assessed in other contexts, moving such techniques to a HPC workload required significant additional effort. Obviously, an accurate modeling of communications and network topology was one of the key to such achievements. Another less obvious key was the choice to combine in a single tool the possibility to do both offline and online simulation.
Abstract-Simulation and modeling for performance prediction and profiling is essential for developing and maintaining HPC code that is expected to scale for next-generation exascale systems, and correctly modeling network behavior is essential for creating realistic simulations. In this article we describe an implementation of a flow-based hybrid network model that accounts for factors such as network topology and contention, which are commonly ignored by other approaches. We focus on large-scale, Ethernet-connected systems, as these currently compose 37.8% of the TOP500 index, and this share is expected to increase as higher-speed 10 and 100GbE become more available. The European Mont-Blanc project to study exascale computing by developing prototype systems with low-power embedded devices will also use Ethernet-based interconnect. Our model is implemented within SMPI, an open-source MPI implementation that connects real applications to the SimGrid simulation framework. SMPI provides implementations of collective communications based on current versions of both OpenMPI and MPICH. SMPI and SimGrid also provide methods for easing the simulation of largescale systems, including shadow execution, memory folding, and support for both online and offline (i.e., post-mortem) simulation. We validate our proposed model by comparing traces produced by SMPI with those from real world experiments, as well as with those obtained using other established network models. Our study shows that SMPI has a consistently better predictive power than classical LogP-based models for a wide range of scenarios including both established HPC benchmarks and real applications.
Simulation is a popular approach to obtain objective performance indicators platforms that are not at one's disposal. It may help the dimensioning of compute clusters in large computing centers. In this work we present a framework for the offline simulation of MPI applications. Its main originality with regard to the literature is to rely on time-independent execution traces. This allows us to completely decouple the acquisition process from the actual replay of the traces in a simulation context. Then we are able to acquire traces for large application instances without being limited to an execution on a single compute cluster. Finally our framework is built on top of a scalable, fast, and validated simulation kernel. In this paper, we present the used time-independent trace format, investigate several acquisition strategies, detail the developed trace replay tool, and assess the quality of our simulation framework in terms of accuracy, acquisition time, simulation time, and trace size.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.