Pre-adolescence and adolescence are developmental periods associated with increased vulnerability for tobacco addiction, and exposure to tobacco during these periods may lead to long-lasting changes in behavioral and neuronal plasticity. The present study examined the short- and long-term effects of nicotine and nicotine withdrawal on fear conditioning in pre-adolescent, adolescent, and adult mice, and potential underlying substrates that may mediate the developmental effects of nicotine, such as changes in nicotinic acetylcholine receptor (nAChR) binding, CREB expression, and nicotine metabolism. Age-related differences existed in sensitivity to the effects of acute nicotine, chronic nicotine and nicotine withdrawal on contextual fear conditioning (no changes in cued fear conditioning were seen); younger mice were more sensitive to the acute effects and less sensitive to the effects of nicotine withdrawal 24 hours post treatment cessation. Developmental differences in nAChR binding were associated with the effects of nicotine withdrawal on contextual learning. Developmental differences in nicotine metabolism and CREB expression were also observed, but were not related to the effects of nicotine withdrawal on contextual learning 24 hours post treatment. Chronic nicotine exposure during pre-adolescence or adolescence, however, produced long-lasting impairments in contextual learning that were observed during adulthood, whereas adult chronic nicotine exposure did not. These developmental effects could be related to changes in CREB. Overall, there is a developmental shift in the effects of nicotine on hippocampus-dependent learning and developmental exposure to nicotine results in adult cognitive deficits; these changes in cognition may play an important role in the development and maintenance of nicotine addiction.
Acute nicotine enhances contextual fear conditioning, whereas withdrawal from chronic nicotine produces impairments. However, the nicotinic acetylcholine receptors (nAChR) that are involved in nicotine withdrawal deficits in contextual fear conditioning are unknown. The present study used genetic and pharmacological techniques to investigate the nAChR subtype(s) involved in the effects of nicotine withdrawal on contextual fear conditioning. β2 or α7 nAChR subunit knockout (KO) and corresponding wild-type (WT) mice were withdrawn from 12 days of chronic nicotine treatment (6.3 mg/kg/day), and trained with 2 conditioned stimulus (CS; 85 dB white noise) -unconditioned stimulus (US; 0.57mA footshock) pairings on day 13. On day 14, mice were tested for contextual and cued freezing. β2 KO mice did not show nicotine withdrawal-related deficits in contextual fear conditioning, in contrast to WT mice and α7 KO mice. A follow-up study investigated if nicotine withdrawal disrupts acquisition or recall of contextual fear conditioning. The high affinity nAChR antagonist dihydro-beta-erythroidine (DHβE; 3 mg/kg) was administered prior to training or testing to precipitate withdrawal in chronic nicotine-treated C57BL/6 mice. Deficits in contextual fear conditioning were observed in chronic nicotine-treated mice when DHβE was administered prior to training, but not when administered at testing. These results indicate that β2-containing nAChRs, such as the α4β2 receptor, mediate nicotine withdrawal deficits in contextual fear conditioning. In addition, nicotine withdrawal selectively affects acquisition but not recall or expression of the learned response.
The effects of nicotine on cognitive processes such as learning and memory may play an important role in the addictive liability of tobacco. However, it remains unknown whether genetic variability modulates the effects of nicotine on learning and memory. The present study characterized the effects of acute, chronic, and withdrawal from chronic nicotine administration on fear conditioning, somatic signs, and the elevated plus maze in 8 strains of inbred mice. Strain-dependent effects of acute nicotine and nicotine withdrawal on contextual fear conditioning, somatic signs, and the elevated plus maze were observed, but no association between the effects of acute nicotine and nicotine withdrawal on contextual fear conditioning were observed, suggesting that different genetic substrates may mediate these effects. The identification of genetic factors that may alter the effects of nicotine on cognition may lead to more efficacious treatments for nicotine addiction.
A predominant symptom of nicotine withdrawal is cognitive deficits, yet understanding of the neural basis for these deficits is limited. Withdrawal from chronic nicotine disrupts contextual learning in mice and this deficit is mediated by direct effects of nicotine in the hippocampus. Chronic nicotine treatment upregulates nicotinic acetylcholine receptors (nAChR); however, it is unknown whether upregulation is related to the observed withdawal-induced cognitive deficits. If a relationship between altered learning and nAChR levels exists, changes in nAChR levels after cessation of nicotine treatment should match the duration of learning deficits. To test this hypothesis, mice were chronically administered 6.3 mg/kg/day (freebase) nicotine for 12 days and trained in contextual fear conditioning on day 11 or between 1 to 16 days after withdrawal of treatment. Changes in [125I]-epibatidine binding at cytisine-sensitive and cytisine-resistant nAChRs and chronic nicotine-related changes in α4, α7, and β2 nAChR subunit mRNA expression were assessed. Chronic nicotine had no behavioral effect but withdrawal produced deficits in contextual fear conditioning that lasted 4 days. Nicotine withdrawal did not disrupt cued fear conditioning. Chronic nicotine upregulated hippocampal cytisine-sensitive nAChR binding; upregulation continued after cessation of nicotine administration and the duration of upregulation during withdrawal paralleled the duration of behavioral changes. Changes in binding in cortex and cerebellum did not match behavioral changes. No changes in α4, α7, and β2 subunit mRNA expression were seen with chronic nicotine. Thus, nicotine withdrawal-related deficits in contextual learning are time-limited changes that are associated with temporal changes in upregulation of high-affinity nAChR binding.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.