One potential factor contributing to the susceptibility of these cells to premature death arises from the cytotoxic effects of amyloid- (A) peptide deposition at or near sites of neuronal degeneration. Cultured human Franc ¸ois G.
The molecular mechanisms mediating degeneration of midbrain dopamine neurons in Parkinson's disease (PD) are poorly understood. Here, we provide evidence to support a role for the involvement of the calcium-dependent proteases, calpains, in the loss of dopamine neurons in a mouse model of PD. We show that administration of N-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP) evokes an increase in calpain-mediated proteolysis in nigral dopamine neurons in vivo. Inhibition of calpain proteolysis using either a calpain inhibitor (MDL-28170) or adenovirus-mediated overexpression of the endogenous calpain inhibitor protein, calpastatin, significantly attenuated MPTP-induced loss of nigral dopamine neurons. Commensurate with this neuroprotection, MPTP-induced locomotor deficits were abolished, and markers of striatal postsynaptic activity were normalized in calpain inhibitor-treated mice. However, behavioral improvements in MPTP-treated, calpain inhibited mice did not correlate with restored levels of striatal dopamine. These results suggest that protection against nigral neuron degeneration in PD may be sufficient to facilitate normalized locomotor activity without necessitating striatal reinnervation. Immunohistochemical analyses of postmortem midbrain tissues from human PD cases also displayed evidence of increased calpain-related proteolytic activity that was not evident in age-matched control subjects. Taken together, our findings provide a potentially novel correlation between calpain proteolytic activity in an MPTP model of PD and the etiology of neuronal loss in PD in humans.
p53 is a pivotal molecule regulating the death of neurons both after acute injury and during development. The molecular mechanisms by which p53 induces apoptosis in neuronal cells, however, are not well understood. We have shown previously that adenovirus-mediated p53 gene delivery to neurons was sufficient to induce apoptosis. In the present study we have examined the molecular mechanism by which p53 evokes neuronal cell death. Adenovirus-mediated delivery of p53 to cerebellar granule neurons resulted in caspase-3 (CPP32) activation followed by terminal deoxynucleotidyl transferase-mediated biotinylated UTP nick end labeling (TUNEL) staining and loss of viability as determined by an MTT survival assay. To determine whether Bax is essential for caspase-3 activation, p53 was expressed in Bax-deficient cells. Bax null neurons did not exhibit caspase-3 activation in response to p53 and were protected from apoptosis. To determine whether Bax-dependent caspase-3 activation was required in p53-mediated neuronal cell death, caspase-3-deficient neurons were examined. Our results indicate that caspase-3-deficient neurons exhibit a remarkable delay in apoptosis and a dramatic decrease in TUNEL-positive cells. These studies demonstrate that p53-induced cell death in postmitotic neurons involves a Bax-dependent caspase-3 activation, suggesting that these molecules are important determinants in neuronal cell death after injury.
Although B-amyloid (AB) is suggested to play an important role in Alzheimer's disease, the mechanisms that control AB-evoked toxicity are unclear. We demonstrated previously that the cell cycle-related cyclin-dependent kinase 4/6/retinoblastoma protein pathway is required for AB-mediated death. However, the downstream target(s) of this pathway are unknown. We show here that neurons lacking E2F1, a transcription factor regulated by the retinoblastoma protein, are significantly protected from death evoked by AB. Moreover, p53 deficiency does not protect neurons from death, indicating that E2F1-mediated death occurs independently of p53. Neurons protected by E2F1 deficiency have reduced Bax-dependent caspase 3-like activity. However, protection afforded by E2F1, Bax, or caspase 3 deficiency is transient. In the case of E2F1, but not with Bax or caspase 3 deficiency, delayed death is accompanied by DEVD-AFC cleavage activity. Taken together, these results demonstrate the required role of E2F1, Bax, and caspase 3 in AB evoked death, but also suggest the participation of elements independent of these apoptosis regulators.Alzheimer's disease (AD) 1 is a neurodegenerative disorder characterized by memory loss and cognitive impairment (1). Although the etiology of AD is not fully understood, an increasing body of evidence suggests the importance of B-amyloid in the initiation/progression of the disease. B-amyloid (AB), a 39 -43-amino acid peptide, assembles into insoluble aggregates forming plaques characteristic of AD (2, 3). AB is formed by alternative proteolysis from an integral membrane-localized B-amyloid precursor protein (4), and its importance in AD is underscored by the identification of mutations in B-amyloid precursor protein in some familial cases of AD (5, 6). In addition, studies with in vitro cultured neurons treated with toxic forms of aggregated AB protein (7-9) as well as in vivo studies utilizing transgenic mice expressing AB (10) demonstrated neuronal loss by an apoptotic pathway. However, the mechanism by which AB causes neuronal apoptosis is not well understood.Recent evidence has suggested that cell cycle molecules that normally control cell proliferation play an important required role in some forms of neuronal death. Of particular relevance to AD, numerous reports demonstrate abnormal up-regulation of a variety of cell cycle proteins/activity in brains from AD patients. These include cyclin B, D, and E, cdc2, and Cdk4 (11-13). In addition, phosphoepitopes, including phosphorylated tau, common to both mitotic cells and degenerating AD neurons, have been described (12). In support of the potential importance of cell cycle in AD, we have shown that flavopiridol, a pharmacological inhibitor of Cdks, as well as expression of dominant negative Cdk4/6 but not 2 or 3, protects cultured cortical neurons from death evoked by AB (14). This evidence supports the idea that Cdk4/6 activation plays an obligatory role in death of neurons evoked by AB.These previous observations raise the question of the relev...
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.