The capture rate of solid oxide-inclusion particles from molten steel by molten slag depends on the rate of steel film drainage (which occurs at certain particle velocities), interfacial separation, and dissolution into the slag. In this study the capture of common oxide inclusions of sizes 2.5-200 mm and with velocities ranging from their terminal velocities to 0.3 m · s Ϫ1 approaching the interface between molten iron and slags with chemistries corresponding to ladle, tundish and mold slags are investigated. Calculations, based on a model available in literature, show that film drainage (when applicable) is rapid enough to be ignored. A sensitivity analysis based on the slag properties show that the interfacial energy between slag and inclusion is the most pertinent property that could hinder interfacial separation. However, the interfacial tension needed to achieve this has to be a minimum of 0.41 N/m which is unreasonable for the case of common oxide inclusions such as Al 2 O 3 , MgO, ZrO 2 and MgAl 2 O 4 . The final step of dissolution was found based on studies with Confocal Scanning Laser Microscope experiments, to be significantly slower than the other steps. For a 100 mm particle, in the slags/inclusions investigated a correlation between slag viscosity, h
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.